首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4548088篇
  免费   310675篇
  国内免费   8348篇
耳鼻咽喉   65171篇
儿科学   144802篇
妇产科学   123567篇
基础医学   644714篇
口腔科学   130629篇
临床医学   419445篇
内科学   858263篇
皮肤病学   97860篇
神经病学   369329篇
特种医学   172022篇
外国民族医学   1547篇
外科学   674955篇
综合类   107045篇
现状与发展   16篇
一般理论   1876篇
预防医学   369751篇
眼科学   109145篇
药学   334802篇
  122篇
中国医学   9109篇
肿瘤学   232941篇
  2019年   36743篇
  2018年   49168篇
  2017年   37263篇
  2016年   41826篇
  2015年   46984篇
  2014年   67308篇
  2013年   102561篇
  2012年   139012篇
  2011年   148333篇
  2010年   88109篇
  2009年   83264篇
  2008年   138624篇
  2007年   147654篇
  2006年   148874篇
  2005年   144890篇
  2004年   139342篇
  2003年   133748篇
  2002年   130370篇
  2001年   198656篇
  2000年   204520篇
  1999年   173164篇
  1998年   52695篇
  1997年   46704篇
  1996年   45885篇
  1995年   43802篇
  1994年   40753篇
  1993年   38277篇
  1992年   136911篇
  1991年   133464篇
  1990年   129723篇
  1989年   125096篇
  1988年   116033篇
  1987年   113841篇
  1986年   107433篇
  1985年   103418篇
  1984年   78589篇
  1983年   67146篇
  1982年   40950篇
  1979年   73675篇
  1978年   52323篇
  1977年   43954篇
  1976年   41899篇
  1975年   44236篇
  1974年   54005篇
  1973年   51620篇
  1972年   48909篇
  1971年   45634篇
  1970年   42685篇
  1969年   40225篇
  1968年   37247篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
102.
Background/ObjectiveOccurrence of post-dural puncture headache (PDPH) after diagnostic lumbar puncture (LP) for idiopathic intracranial hypertension (IIH) may seem very unlikely in clinical practice. Nevertheless, it has been suggested by several studies, mainly in sub-group analyses. We aimed to evaluate the prevalence of PDPH in an IIH population and determine any eventual predictive factors of PDPH occurrence.MethodsWe conducted a retrospective multiple-center observational study. All newly diagnosed IIH patients who met the International Classification of Headache Disorders (ICHD-3) or the Dandy modified criteria were included from three different French hospitals. They all underwent LP following the same process with the same type of needle. We recorded PDPH occurring within five days after LP, as defined by ICHD-3 criteria.ResultsSeventy-four IIH patients were recruited, of whom 23 (31%) presented with PDPH. Neither classical risk factors for PDPH such as body mass index, age or gender, nor cerebrospinal fluid opening pressure, or specific IIH features were associated with occurrence of PDPH.ConclusionPDPH can occur after LP in IIH patients. Clinicians should be aware of this possible event during the IIH diagnosis assessment and should not automatically reconsider IIH diagnosis. PDPH prevention using an atraumatic needle and dedicated PDPH treatment seem relevant in IIH patients.  相似文献   
103.
In this short review, I describe from personal experience how every step in the career of any scientist, no matter how disjointed and pragmatic each might seem at the time, will almost inevitably meld together, to help us all tackle novel projects. My postdoctoral research in Paul Greengard''s laboratory, where I investigated neurotransmitter-mediated phosphorylation of Synapsin I, was instrumental in my career progression, and Paul''s support was instrumental in my ability to make a leap into independent research.

When the Society for Neuroscience was soliciting articles for its new journal, I was a postdoctoral fellow in Paul Greengard''s laboratory, completing studies of neurotransmitter regulation of synapsin I phosphorylation. When Paul informed me that he been invited to contribute a paper, we knew it would be risky thing to volunteer one''s precious data because this was an untested journal. But it came at a good time because I was about to leave the laboratory and had data that complemented my recently accepted paper demonstrating phosphorylation of the presynaptic protein Synapsin I (which we called Protein I at the time) by a neurotransmitter (Dolphin and Greengard, 1981b). So I was very happy to publish in the initial volume of the Journal of Neuroscience, which was to be the first of my 17 papers so far in the journal. The data published in 1981 extended my work on serotonin-mediated phosphorylation and also demonstrated phosphorylation by another class of neuromodulator, acting at adenosine receptors (Dolphin and Greengard, 1981a). It was such a pleasure for me to reread that paper, as it brought back many memories of life in the Greengard laboratory, together with colleagues and friends, including Pietro De Camilli, Angus Nairn, Wieland Huttner, Clive Palfrey, Eric Nestler, Suzanne Lohmann, Ulrich Walter, Howard Schulman, Mary Kennedy, and many others.My interest in intracellular signaling pathways activated by neurotransmitters began when I was an undergraduate student in Biochemistry; I wrote a dissertation on cyclic AMP in prokaryotes and eukaryotes, and then conducted an undergraduate research project examining glycine as a neurotransmitter, using spinal cord synaptosomes as an experimental preparation. This interest propelled me toward Parkinson''s disease research as a graduate student in the laboratory of the neurologist David Marsden at the Institute of Psychiatry in London, where I examined the importance of dopaminergic and noradrenergic pathways in animal models of Parkinson''s disease. I then wrote to Paul Greengard, asking to do postdoctoral research under his mentorship, because I knew I needed more basic training in cell signaling pathways, since my PhD environment had been very focused on translational and clinical research. I could not think of anywhere better than Paul''s laboratory because of his seminal work on cyclic nucleotide signaling pathways (Beam and Greengard, 1976). He said his laboratory was full, but agreed to take me in a year''s time, subject to interview. Fortunately, I had also obtained a UK Medical Research Council French exchange fellowship to work in the laboratory of Joel Bockaert, at College de France in Paris, where I studied the coupling between β-adrenergic receptors and adenylate cyclase. This valuable experience cemented my desire to continue research in this area and work with Paul Greengard. Thus it was that Paul, on a visit to Paris, invited me to be interviewed in his hotel room. I was on my guard when I knocked on the door, and a voice called out to come in. As I entered, I could see nothing but a large bed, but I soon located Paul lying flat on the floor beyond; he explained it was because of his chronic back problem. I perched on the bed, and tried to answer his searching scientific questions. I later realized that Paul lay on the floor at every opportunity, often in our laboratory meetings and indeed during other interviews (Nestler, 2019).When I arrived in Paul''s laboratory then at Yale, in the summer of 1978, the protein Synapsin I had recently been identified as a major presynaptic phosphoprotein (Ueda and Greengard, 1977). It was then called “Protein 1” because it stood out as the main polypeptide in synaptosomes that was phosphorylated in both a cAMP- and a Ca2+-dependent manner (Sieghart et al., 1979). However, no neurotransmitters had yet been found to influence the phosphorylation of Synapsin I, and to identify such a pathway seemed to be the holy grail at the time. Paul''s world view of multiple signaling cascades terminating in the phosphorylation of many different target proteins, that would underlie long-term synaptic events, was often at odds with the then prevailing view of ion channel biologists, that neurotransmission was mediated by fast neurotransmitters acting on ion channels, a process in which there was no need to consider neurochemical mechanisms. Eric Kandel (from an electrophysiological standpoint), and Paul, from the basis of biochemical pathways, were both key to the acceptance of the view that a multitude of biochemical pathways must play a role in longer term events. Indeed, Paul was collaborating with Eric Kandel''s laboratory at that time to elucidate whether a phosphorylation cascade mediated the effects of serotonin (5-HT) in Aplysia, and many of us in the laboratory were very influenced by these elegant studies, combining, as they did, electrophysiology and biochemical approaches (Castellucci et al., 1980, 1982).Paul suggested that my project should be to examine whether neurotransmitters could change the state of phosphorylation of Synapsin I in the brain, but he left it entirely to me what tissue I should use for my study. There were ∼25 postdocs and students in his laboratory at the time, and so I had a lot of help and advice, although Paul was the opposite of a micro-manager. Influenced both by the work of Eric Kandel and that of my previous mentor Joel Bockaert (Enjalbert et al., 1978), I decided that serotonin would be a good neurotransmitter to study. Taking inspiration from the work of George Aghajanian, also a professor in the Pharmacology Department at Yale, whose studies had revealed the effects of serotonin on many types of neuron (Aghajanian et al., 1990), I chose to examine the tiny facial nucleus in the brainstem, since Aghajanian had extensively examined the electrophysiological properties of this nucleus, as well as its ultrastructure (Aghajanian and McCall, 1980). His work indicated the facial nucleus had no interneurons, and therefore I thought it might lead to a more homogeneous phosphorylation response than many other brain areas. Indeed, serotonin did result in an increase in phosphorylation of Synapsin I in this preparation, but I initially found that the effects were small and very variable (Fig. 1, left). This was disappointing, and I remember blaming myself for being a cack-handed experimenter.Open in a separate windowFigure 1.Phosphorylation of Synapsin I by actions at serotonin and adenosine receptors. Stimulation of Synapsin I (then called Protein I) phosphorylation with serotonin in the presence and absence of IBMX (left) (from Dolphin and Greengard, 1981b, our Fig. 2) or 2-choloroadenosine (right) (from Dolphin and Greengard, 1981a, our Fig. 4). The “back phosphorylation” method was used, in which 32P-ATP together with catalytic subunit of protein kinase A were used to phosphorylate residual nonphosphorylated sites on Synapsin I.A breakthrough came indirectly through family tragedy; my father died in 1979, and I returned to England for the funeral. Fortuitously, I also decided to investigate potential future positions in the UK, and visited Leslie Iversen''s Medical Research Council unit in Cambridge. While there, I showed my underwhelming phosphorylation data to John Dowling, who was on sabbatical in the unit at the time, working on dopamine-sensitive adenylate cyclase activity in the retina (Watling et al., 1979). I asked his advice and remember clearly that he suggested adding a low concentration of a phosphodiesterase inhibitor to the slices to potentiate the cAMP response to serotonin. On my return, I duly added isobutyl-methyl-xanthine (IBMX) to the facial nucleus slices, and the responses became much more robust (Dolphin and Greengard, 1981b) (Fig. 1, left). Similarly, Eric Nestler also found that dopamine and depolarization increased the phosphorylation of Synapsin I in superior cervical ganglion neurons (Nestler and Greengard, 1980).Something I could not understand in my data was that the serotonin-mediated phosphorylation of Synapsin I was Ca2+-dependent, whereas the phosphorylation mediated by stimulation of an adenosine receptor was not. This was the main topic of my follow-up paper in the first volume of Journal of Neuroscience (Dolphin and Greengard, 1981a) (Fig. 1, right). Everyone in the laboratory remembers that writing papers with Paul was exhausting, as we considered multiple versions of every sentence, and these were written and rewritten in pencil with many erasures. But I can still hear his voice in every phrase of this Journal of Neuroscience paper, and it remains a pleasure to reread each well-considered argument, for which I take absolutely no credit.In the Discussion, many possibilities are suggested to explain the surprising Ca2+ dependence of the serotonin-stimulated phosphorylation, and these points remain relevant, even now. For example, we point out that, in Aplysia neurons, serotonin stimulated a presynaptic adenylate cyclase, and this increased the influx of Ca2+ (Shimahara and Tauc, 1977; Klein and Kandel, 1978). We suggested that both processes might contribute to presynaptic Synapsin I phosphorylation. I also wonder now if we were seeing a combined effect of 5HT3 receptor activation, allowing Ca2+ entry, and subsequent Ca2+-calmodulin (CaM) kinase-dependent phosphorylation of Synapsin I, as well as activation of presynaptic serotonergic GPCRs that directly stimulated adenylate cyclase. Of course, the existence of 5HT3 receptors, which are Ca2+-permeable ion channels, and the many subtypes of G-protein-coupled 5-HT receptors was unknown at the time (Raymond et al., 2001).My study of neurotransmitter-dependent phosphorylation of Synapsin I was cut short because of family problems that called me back to the UK. But work on Synapsin I simultaneously involved many others in Paul''s laboratory, so research on its subcellular localization and function continued apace. For example, Wieland Huttner and Mary Kennedy both contributed to unraveling the process of Ca2+-dependent phosphorylation of Synapsin I (Huttner et al., 1981; Kennedy and Greengard, 1981). Indeed, cAMP-dependent protein kinase and CaM kinase both phosphorylated the same site on Synapsin I, and CaM kinase also phosphorylated additional sites (Huttner et al., 1981). Pietro De Camilli showed in elegant immuno-electron microscopic studies that Synapsin I was a cytoplasmic protein that was associated with synaptic vesicles (De Camilli et al., 1983). To date, there are over 2000 studies involving Synapsin I listed in PubMed, identifying its roles in synaptic function and pathology. These include many from Paul''s own laboratory, continuing throughout his career (Hilfiker et al., 2005; Venton et al., 2006).When I returned to UK, I had the good fortune to obtain a staff position at the Medical Research Council''s National Institute of Medical Research (NIMR) at Mill Hill in London. This was an institution that Paul knew well, since he had spent a postdoctoral period in Wilhelm Feldberg''s department at NIMR in the 1950s, recording from sympathetic nerve fibers. I find it fascinating that Paul was already interested in phosphorylation even then (Greengard and Straub, 1959a, 1959b). My post came about entirely through Paul''s suggestion and generosity: he wrote to Arnold Burgen, then the Director of the Institute, whom he must have known from his work on cholinergic transmission. Suddenly and miraculously, I was offered a job, during a period when Margaret Thatcher was Prime Minister, the UK was in a deep recession, and academic positions were few and far between.Before arriving, I knew very little about NIMR, and was thrilled to be appointed into the same Division of Neurophysiology and Neuropharmacology, which had previously housed the Yale triumvirate of Paul Greengard, Murdoch Ritchie, and Bill Douglas, and which currently contained an eclectic and exciting mix of groups studying pain, hearing, epilepsy, and hippocampal LTP. Wilhelm Feldberg also still had a laboratory there, and used to call me Delphine. I was, however, supernumerary, and given a small cupboard to work in, and an even smaller research consumables budget. In that environment, since I had become intrigued by presynaptic events, I decided to examine neurotransmitter release, and its modulation by activation of presynaptic receptors, including those activated by adenosine agonists, building on my knowledge of the very robust response of Synapsin I phosphorylation (Dolphin, 1983; Dolphin and Archer, 1983). I also rapidly developed an enjoyable collaboration with Tim Bliss and members of his group, including Mick Errington, working with them to measure field potentials and examine glutamate release from the dentate gyrus during the induction of LTP (Dolphin et al., 1982).Studying the regulation of neurotransmitter release naturally led me to further questions about regulation of the Ca2+ influx that triggers this release, but this was not something I could directly address at NIMR. Although it did not feel like it at the time, it was fortuitous that the rules for obtaining tenure changed while I was there, meaning that to apply for tenure I would have to reapply for my position and then remain untenured for another 5 years. Many of the affected staff started to look for university posts, and I was offered a lectureship at St. George''s Hospital Medical School, in the Department of Pharmacology. The interview went well, apart from being asked if I intended to have children, and I moved there in 1983, hoping again to pivot my research in a new direction. At that time, the Department was almost entirely populated by electrophysiologists, including the Head of Department, John Kelly, together with Vincenzo Crunelli, Mark Meyer, and Tom Bolton.In this environment, it would be feasible for me to study voltage-gated calcium channels and their modulation by neurotransmitters, and how this related to neurotransmitter release. Ironically, while I was at Yale, Richard Tsien was on the faculty in the Physiology department, doing beautiful work on cardiac electrophysiology, leading up to an understanding of how cAMP modulates cardiac calcium channels, and the existence of additional calcium channels in neurons (Bean et al., 1984; Nowycky et al., 1985). However, my main memory of Dick Tsien at the time was that he adjudicated on my Yale postdoctoral fellowship application. When I started investigating calcium channels, I very belatedly wished I had concentrated better during Physiology seminars at Yale, to take advantage of their wealth of knowledge. Nevertheless, through the enormous generosity particularly of John Kelly at St. George''s, I was able to learn how to record calcium currents in DRG neurons, which had already been established as a model to study presynaptic events (Dunlap and Fischbach, 1978). Together with my first postdoctoral research assistant and great friend, Rod Scott, we started to apply the same techniques to examine the mechanism of modulation of action potentials and calcium currents in these neurons by neurotransmitters, where we showed inhibition, particularly by activation of GABA-B and adenosine receptors (Dolphin et al., 1986).Tools were initially lacking to study the role of G proteins in the modulation of calcium channels and neurotransmitter release, but this changed for me when I visited Pietro De Camilli in Milan and attended the Fifth International Conference on Cyclic Nucleotides and Protein Phosphorylation, in July 1983. There I heard about the use of pertussis toxin to distinguish between different GTP binding protein mechanisms. Although it was not yet available commercially, I managed to locate a local source of pertussis toxin (entailing rather scary visits to the UK government Center for Applied Microbiology & Research at Porton Down, where research on dangerous toxins and pathogens was conducted). Using both pertussis toxin and nonhydrolyzable guanine nucleotide analogs (including photoactivatable forms, made by John Wootton and David Trentham at NIMR), we then investigated the involvement of pertussis toxin-sensitive G proteins in the modulation of both glutamate release (Dolphin and Prestwich, 1985) and calcium currents (Dolphin et al., 1986; Scott and Dolphin, 1986; Dolphin et al., 1988).One of the next big scientific questions was to examine the same modulatory processes using the calcium channel subunits that were being cloned at that time by several groups (Tanabe et al., 1987; Ellis et al., 1988; De Jongh et al., 1990; Mori et al., 1991; Starr et al., 1991; Williams et al., 1992). In 1989, I was asked to apply for the Chair of Pharmacology at the Royal Free Hospital School of Medicine in London, and there I reoriented our efforts to examine the role of specific calcium channel subunits in the modulation of native and cloned calcium currents by G proteins. In our work, we concentrated initially on the role of the calcium channel β subunits (Berrow et al., 1995). We then uncovered an essential role for the N-terminus of CaV2 calcium channels in their G-protein modulation (Page et al., 1998; Canti et al., 1999), and we demonstrated the importance of calcium channel β subunits in the G-protein modulation of CaV2.2 channels (Meir et al., 2000; Leroy et al., 2005), and also in PI3 kinase-mediated calcium channel modulation (Viard et al., 2004).At that time, very little work had been done on the role of the intriguing α2δ subunits of calcium channels, whose topology and function were initially unclear (Brickley et al., 1995; Gurnett et al., 1996). We started working on these proteins through another fortunate encounter. When the Royal Free School of Medicine was merged with University College London (UCL), I was asked to move to the UCL Gower Street campus in 1997, primarily to free up my space for Professor Geoff Burnstock, who had relinquished his role as Head of Department of Anatomy at UCL. There, I had the good fortune to collaborate with Michele Rees in the Pediatrics Department, on the molecular basis for the Ducky mouse mutation, that causes absence epilepsy and ataxia. The mutation turned out to be in a calcium channel auxiliary subunit gene, Cacna2d2, encoding α2δ−2 (Barclay et al., 2001). This work fortuitously led us on to an extended series of studies on the biochemistry, physiology, and pharmacology of the α2δ subunit family, about which little was then known. These investigations allowed me to combine my interests in biochemistry, from my undergraduate years, with all the many other techniques we have embraced, including electrophysiology. Among our findings were that the von Willebrand factor domain of α2δ subunits is essential for their ability to augment calcium currents (Canti et al., 2005; Hoppa et al., 2012; Dahimene et al., 2018), that α2δ proteins are anchored to the plasma membrane via a glycosyl-phosphatidyl inositol linkage rather by a transmembrane domain (Davies et al., 2010), that the α2δ subunits increase trafficking of calcium channels to the cell surface (Cassidy et al., 2014), and that proteolytic cleavage of α2δ into α2 and δ is an essential molecular switch for the augmentation of calcium currents and transmitter release (Kadurin et al., 2016; Ferron et al., 2018).Other studies, including work from our own laboratory, found that α2δ−1 mRNA and protein are strongly upregulated in DRG neurons in rodent models of neuropathic pain (Luo et al., 2001; Newton et al., 2001; Bauer et al., 2009). Furthermore, α2δ−1 is the main receptor for the antiepileptic drug gabapentin, which is also of therapeutic benefit in neuropathic pain (Gee et al., 1996). We contributed to showing that their binding to α2δ−1 is essential for the action of gabapentinoids to alleviate neuropathic pain (Field et al., 2006). Since α2δ proteins are auxiliary subunits, the molecular mechanism of action of these drugs in neuropathic pain was not immediately obvious, until we showed that gabapentinoids reduced calcium currents chronically, but not acutely, through an inhibitory effect on α2δ trafficking, both in vitro (Hendrich et al., 2008; Tran-Van-Minh and Dolphin, 2010) and in vivo (Bauer et al., 2009). We then found, by making a functional extracellularly tagged version of CaV2.2, that as a consequence, gabapentin also reduced the trafficking and cell surface expression of the channel itself (Cassidy et al., 2014). A knock-in mouse containing this tagged CaV2.2 is now allowing us to identify that α2δ−1 KO also reduces the cell surface localization of CaV2.2 in DRGs and their presynaptic terminals in vivo (Nieto-Rostro et al., 2018).The molecular mechanisms involved in the development and maintenance of neuropathic pain are the subject of research of many groups (for review, see Sexton et al., 2018; Alsaloum et al., 2020; Halievski et al., 2020). As a result of orienting our research toward the involvement of calcium channels in neuropathic pain, I encountered another unexpected advantage of moving to UCL. We have been able to benefit enormously from the knowledge and advice of the many experts in pain who work there, including John Wood, Tony Dickenson, and Maria Fitzgerald. It is remarkable that, during my time at UCL, threads from my past have been picked up and helped to shape my work. Indeed, we have collaborated extensively with Tony Dickenson, who was one of the other nontenured staff scientists who left NIMR at the same time as me, and who then obtained a lectureship directly at UCL (Bauer et al., 2009; Patel et al., 2013). Similarly, in an extension of the Greengard family, we had a valuable collaboration with Tim Ryan, who has also worked extensively with Paul Greengard''s laboratory, particularly on the role of Synapsins in vesicular release (Ryan et al., 1996; Chi et al., 2003). With Tim, we studied the role of α2δ proteins in presynaptic Ca2+ entry and vesicular release (Hoppa et al., 2012), and this led us on to further examining the role of proteolytic cleavage of α2δ in these processes (Kadurin et al., 2016; Ferron et al., 2018).I was honored to speak at Paul''s 80th birthday celebration, and then also to attend his 90th birthday symposium, both held at Rockefeller University, where I was very happy to meet up with so many previous colleagues (Fig. 2). At the latter meeting, I also had the privilege of being able to tell Paul of my election to the Royal Society, and to thank him for his support; and I could see his real pleasure in this news. Although I have never worked directly on Synapsins since leaving Paul''s laboratory, from these and other meetings, I have of course retained a keen interest in Paul''s wide-ranging research, maintained until his death at age 93 in 2019. His work unraveling the enormous complexity of the many pathways involving neuronal protein phosphorylation, and their physiological and pathologic roles (Hilfiker et al., 1999; Svenningsson et al., 2004; Brichta and Greengard, 2014), contributed to his being awarded the Nobel Prize in 2000, together with Arvid Carlsson and Eric Kandel.Open in a separate windowFigure 2.Eric Nestler, Paul Greengard, Annette Dolphin; December 11, 2015 at Paul''s 90th birthday celebration.For younger scientists, I have only a few messages. Like me, I hope you will find that all your scientific studies and experience will be of benefit in the long run, even if you change fields, and all your scientific mentors, colleagues, and friends will remain important throughout your career; but the value of chance, casual conversations, and fortuitous meetings cannot be overstated. Treasure them all.  相似文献   
104.
AimsOrgan preservation, an important goal in the treatment of head and neck squamous cell carcinoma (HNSCC), may include induction chemotherapy and cisplatin with radiation therapy (CRT). To our knowledge, no reports have directly compared the impact of induction chemotherapy with that of CRT on health-related quality of life (HRQOL).Materials and methodsIn a phase II trial, we assessed the HRQOL of patients treated with induction chemotherapy followed by CRT. Eligible patients had stage III–IV HNSCC. HRQOL questionnaires were administered at baseline, the end of induction (EOI), the end of CRT (EOCRT) and after CRT. Functional Assessment of Cancer Therapy (FACT version 4) assessed HRQOL. We carried out a comparison of changes in HRQOL from baseline to EOI and from EOI to EOCRT. This trial is registered with ClinicalTrials.gov (NCT01566435).ResultsThirty patients were enrolled in the study. Most HRQOL questionnaires were completed (88%). The mean total FACT scores did not differ from baseline to EOI (general: 83.8 versus 79.1, P = 0.08; head and neck: 109.7 versus 105.8, P = 0.33; Total Outcome Index: 69.7 versus 62.3, P = 0.03; respectively, using P ≤ 0.01 to adjust for multiple simultaneous tests of differences). However, total FACT scores significantly worsened from EOI to EOCRT (79.1 versus 62.3, P = 0.01; 105.8 versus 74.2, P < 0.01; 62.3 versus 34.2, P = 0.01; respectively). Within domains, the head and neck cancer subscale score did not differ from baseline to EOI (median 28.5 versus 27.0, P = 0.69), but significantly worsened from EOI to EOCRT (27.0 versus 9.5, P < 0.01). Swallowing, oral pain and voice quality improved from baseline to EOI, but worsened from EOI to EOCRT. Physical and functional scores worsened from baseline to EOI and from EOI to EOCRT. The emotional well-being score improved from baseline to EOI but worsened from EOI to EOCRT.ConclusionsOverall, HRQOL did not significantly change from baseline to EOI but dramatically worsened from EOI to EOCRT.  相似文献   
105.

Purpose

To investigate the preoperative use of combination metformin and statin versus monotherapy on biochemical recurrence (BCR) after radical prostatectomy (RP) in diabetic men.

Patients and Methods

Data of 843 diabetic men who underwent RP were stratified on the basis of preoperative use of no drug or of metformin, statin, or both. Multivariable Cox models were used to test the association between treatment and BCR. In a secondary analysis, models were stratified by race and body mass index (BMI) and further adjusted for glycated hemoglobin (HbA1c).

Results

A total of 259 men (31%) received statin therapy, 94 (11%) metformin, 307 (36%) metformin + statin, and 183 (22%) neither. Five-year BCR-free survival rates were 75% in metformin only versus 75% in metformin + statin versus 60% in statin versus 68% in no drug groups (log-rank, P = .003). On multivariable analysis, preoperative statin use was associated with increased BCR risk versus men receiving neither drug (hazard ratio [HR] = 1.84; 95% confidence interval [CI], 1.28-2.64). Metformin alone (HR 0.88; 95% CI, 0.53-1.47) and metformin + statin (HR 0.88; 95% CI, 0.58-1.33) were unrelated to BCR risks. In secondary analysis, the association between statin use and higher BCR risk was similar regardless of race, but was stronger among men with BMI ≥ 30 kg/m2 (HR 3.12; 95% CI, 1.70-5.72). These results were largely unchanged after adjusting for HbA1c.

Conclusion

Among diabetic men undergoing RP, preoperative statin use was associated with worse BCR risk, especially among men with a high BMI, but these associations may be mitigated by concomitant use of metformin. If validated in future findings, research is needed to understand the basis for these associations.  相似文献   
106.
Abstract

Teaching and learning practices often fail to incorporate new concepts in the ever-evolving field of medical education. Although medical education research provides new insights into curricular development, learners’ engagement, assessment methods, professional development, interprofessional education, and so forth, faculty members often struggle to modernize their teaching practices. Communities of practice (CoP) for faculty development offer an effective and sustainable approach for knowledge management and implementation of best practices. A successful CoP creates and shares knowledge in the context of a specific practice toward the development of expertise. CoPs’ collaborative nature, based on the co-creation of practical solutions to daily problems, aligns well with the goals of applying best practices in health professions education and training new faculty members. In our article, we share 12 tips for implementing a community of practice for faculty development. The tips were based on a comprehensive literature review and the authors’ experiences.  相似文献   
107.
Abstract

Background: Widespread concerns about new medical graduates’ ‘work readiness’ may reflect, in part, differences in mandatory learning outcomes for medical students and new medical graduates.

Purpose: To examine differences between required medical student and PGY1 (first year resident) training program outcomes, and the nature and magnitude of these differences.

Method: Comparison, systematic identification and thematic analysis of differences between the graduate outcomes in the Australian Medical Council Standards for the Assessment and Accreditation of Primary Medical Programs and those in the New Zealand Curriculum Framework for Prevocational Training.

Results: The relationship between these outcome statements were categorized as: essentially similar; continuity; partial discontinuity; and complete discontinuity of learning trajectory. Areas requiring substantial new learning may reflect medical schools’ focus on individual student performance, and on learning and assessments based on single episodes of often uncomplicated illness. This contrasted with a post-graduate focus on integrated health care delivery by teams and management of complex illnesses over the whole patient care journey.

Conclusions: Characterizing these marked differences between pre-graduate and postgraduate standards, within a trajectory of learning, explains some of the difficulties in students’ preparation for work readiness. These could inform learning interventions to support new graduates’ professional development to ensure patient safety. Development and revision of accreditation standards should include formal review against the expectations of the preceding and succeeding phases of learning.  相似文献   
108.
Introduction: In early childhood, wheezing due to lower respiratory tract illness is often associated with infection by commonly known respiratory viruses such as respiratory syncytial virus (RSV) and human rhinovirus (RV). How respiratory viral infections lead to wheeze and/or asthma is an area of active research.

Areas covered: This review provides an updated summary of the published information on the development of post-viral induced atopy and asthma and the mechanisms involved. We focus on the contribution of animal models in identifying pathways that may contribute to atopy and asthma following respiratory virus infection, different polymorphisms that have been associated with asthma development, and current options for disease management and potential future interventions.

Expert commentary: Currently there are no prophylactic therapies that prevent infants infected with respiratory viruses from developing asthma or atopy. Neither are there curative therapies for patients with asthma. Therefore, a better understanding of genetic factors and other associated biomarkers in respiratory viral induced pathogenesis is important for developing effective personalized therapies.  相似文献   

109.

Background

Private hospital rooms have a number of potential advantages compared to shared rooms, including reduced noise and increased control over the hospital environment. However, the association of room type with patient experience metrics in total joint arthroplasty (TJA) patients is currently unclear.

Methods

For private versus shared rooms, we compared our institutional Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) scores in patients who underwent primary TJA over a 2-year period. Regression model odds ratios (ORs) were adjusted for surgeon, date of surgery, and length of stay.

Results

Patients in private rooms were more likely to report a top-box score for overall hospital rating (85.6% vs 79.4%, OR = 1.53, P = .011), hospital recommendation (89.3% vs 83.0%, OR = 1.78, P = .002), call button help (76.0% vs 68.7%, OR = 1.40, P = .028), and quietness (70.4% vs 59.0%, OR = 1.78, P < .001). There were no significant differences on surgeon metrics including listening (P = .225), explanations (P = .066), or treatment with courtesy and respect (P = .396).

Conclusion

For patients undergoing TJA, private hospital rooms were associated with superior performance on patient experience metrics. This association appears specific for global and hospital-related metrics, with little impact on surgeon evaluations. With the utilization of HCAHPS data in value-based initiatives, placement of TJA patients in private rooms may lead to increased reimbursement and higher hospital rankings.

Level of Evidence

Level III, retrospective cohort.  相似文献   
110.

Background

There is continued debate regarding retention versus sacrificing of the posterior cruciate ligament (PCL) in total knee arthroplasty (TKA). We sought to determine if there was a difference in range of motion (ROM) after TKA between patients with PCL sacrifice versus PCL retention when using a highly congruent polyethylene insert.

Methods

We conducted an Institutional Review Board approved retrospective study of consecutive patients receiving TKA using the same implant with a highly congruent polyethylene component implanted by one surgeon from November 2013 to January 2016. Patients were placed in 2 groups based on whether the PCL was intact or released at the time of surgery. Patient charts were reviewed for age, body mass index, PCL status at surgery (incompetent, kept intact, or released), and preoperative/postoperative knee ROM.

Results

Both groups were similar in average age (60.5 vs 60.6, respectively) and body mass index (33.3 vs 32.6, respectively). Postoperative tibial slope (5.5° PCL release, 6.6° PCL retained, P = .028) was the only alignment variable reaching significance; all other alignment and motion variables were similar.

Conclusion

Results indicate that the PCL can be successfully retained with the use of a congruent bearing design, with no evident limitation in postoperative ROM or loss of stability due to the bearing in comparison to patients who undergo PCL release.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号