首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   592篇
  免费   48篇
  国内免费   3篇
耳鼻咽喉   13篇
儿科学   14篇
妇产科学   19篇
基础医学   86篇
口腔科学   20篇
临床医学   43篇
内科学   111篇
皮肤病学   9篇
神经病学   162篇
特种医学   24篇
外科学   31篇
综合类   10篇
预防医学   54篇
眼科学   15篇
药学   15篇
肿瘤学   17篇
  2021年   5篇
  2020年   3篇
  2019年   9篇
  2018年   5篇
  2017年   4篇
  2016年   9篇
  2015年   13篇
  2014年   13篇
  2013年   21篇
  2012年   34篇
  2011年   32篇
  2010年   19篇
  2009年   12篇
  2008年   29篇
  2007年   23篇
  2006年   27篇
  2005年   24篇
  2004年   18篇
  2003年   21篇
  2002年   23篇
  2001年   19篇
  2000年   22篇
  1999年   22篇
  1998年   14篇
  1997年   8篇
  1996年   12篇
  1995年   9篇
  1994年   6篇
  1992年   14篇
  1991年   8篇
  1990年   16篇
  1989年   16篇
  1988年   10篇
  1987年   14篇
  1986年   17篇
  1985年   9篇
  1984年   9篇
  1983年   6篇
  1981年   4篇
  1979年   5篇
  1976年   3篇
  1975年   3篇
  1974年   5篇
  1973年   4篇
  1970年   2篇
  1969年   3篇
  1968年   2篇
  1967年   9篇
  1966年   9篇
  1946年   2篇
排序方式: 共有643条查询结果,搜索用时 0 毫秒
561.
治疗的目的是PRL水平正常.然而,许多学者认为,最好是降低PRL水平到可能的最低值,因为这一策略能最大可能地缩小肿瘤体积甚至于肿瘤消失.为了避免不能耐受药物和药物不良反应,从低剂量开始治疗,并逐步加量.肿瘤缩小后假使PRL水平保持在正常范围,则可以慢慢减少DA剂量.  相似文献   
562.
Cervical vertigo   总被引:22,自引:0,他引:22       下载免费PDF全文
  相似文献   
563.
564.
AIMS: To test the hypothesis that in patients with acquired chronic bilateral ophthalmoplegia, abnormal retinal image slippage during head movements would result in abnormal thresholds for visual perception of motion. METHODS: Five patients (two males and three females) with ophthalmoplegia were included in the study. The average age was 44 years (range 30-69 years). The aetiology of ophthalmoplegia was myasthenia gravis (MG; n=2), chronic progressive external ophthalmoplegia (CPEO; n=2), and chronic idiopathic orbital inflammation. Visual motion detection thresholds were assessed using horizontal and vertical gratings (spatial frequency) set at thresholds for visibility. The grating was then accelerated at 0.09 deg/s(2). The subject's task was to detect the drift direction of the stimulus. RESULTS: Visual motion detection thresholds were raised to a mean of 0.434 deg/s (SD 0.09) (mean normal value 0.287 deg/s (SD 0.08)) for horizontal motion; and to a mean of 0.425 deg/s (SD 0.1) (mean normal value 0.252 deg/s (SD 0.08)) for vertical motion. The difference in values for both horizontal and vertical motion detection were statistically significant when compared with age matched controls; p <0.023 for horizontal motion and p<0.07 for vertical motion (two tailed t test). CONCLUSION: Abnormally raised visual motion thresholds were found in patients with ophthalmoplegia. This may represent a centrally mediated adaptive mechanism to ignore excessive retinal slip and thus avoid oscillopsia during head movements.  相似文献   
565.
566.
BACKGROUND: The American Association of Poison Control Centers (AAPCC; http://www.aapcc.org) maintains the national database of information logged by the country's 61 Poison Control Centers (PCCs). Case records in this database are from self-reported calls: they reflect only information provided when the public or healthcare professionals report an actual or potential exposure to a substance (e.g., an ingestion, inhalation, or topical exposure.), or request information/educational materials. Exposures do not necessarily represent a poisoning or overdose. The AAPCC is not able to completely verify the accuracy of every report made to member centers. Additional exposures may go unreported to PCCs, and data referenced from the AAPCC should not be construed to represent the complete incidence of national exposures to any substance(s). U.S. Poison Centers make possible the compilation and reporting of this report through their staffs' meticulous documentation of each case using standardized definitions and compatible computer systems. The 61 participating poison centers in 2005 are: Regional Poison Control Center, Birmingham, AL; Alabama Poison Center, Tuscaloosa, AL; Arizona Poison and Drug Information Center, Tucson, AZ; Banner Poison Control Center, Phoenix, AZ; Arkansas Poison and Drug Information Center, Little Rock, AK; California Poison Control System-Fresno/Madera Division, CA; California Poison Control System-Sacramento Division, CA; California Poison Control System-San Diego Division, CA; California Poison Control System-San Francisco Division, CA; Rocky Mountain Poison and Drug Center, Denver, CO; Connecticut Poison Control Center, Farmington, CT; National Capital Poison Center, Washington, DC; Florida Poison Information Center, Tampa, FL; Florida Poison Information Center, Jacksonville, FL; Florida Poison Information Center, Miami, FL; Georgia Poison Center, Atlanta, GA; Illinois Poison Center, Chicago, IL; Indiana Poison Center, Indianapolis, IN; Iowa Statewide Poison Control Center, Sioux City, IA; Mid-America Poison Control Center, Kansas City, KA; Kentucky Regional Poison Center, Louisville, KY; Louisiana Drug and Poison Information Center, Monroe, LA; Northern New England Poison Center, Portland, ME; Maryland Poison Center, Baltimore, MD; Regional Center for Poison Control and Prevention Serving Massachusetts and Rhode Island, Boston, MA; Children's Hospital of Michigan Regional Poison Control Center, Detroit, MI; DeVos Children's Hospital Regional Poison Center, Grand Rapids, MI; Hennepin Regional Poison Center, Minneapolis, MN; Mississippi Regional Poison Control Center, Jackson, MS; Missouri Regional Poison Center, St Louis, MO; Nebraska Regional Poison Center, Omaha, NE; New Jersey Poison Information and Education System, Newark, NJ; New Mexico Poison and Drug Information Center, Albuquerque, NM; New York City Poison Control Center, New York, NY; Long Island Regional Poison and Drug Information Center, Mineola, NY; Ruth A. Lawrence Poison and Drug Information Center, Rochester, NY; Upstate (formerly Central) New York Poison Center, Syracuse, NY; Western New York Poison Center, Buffalo, NY; Carolinas Poison Center, Charlotte, NC; Cincinnati Drug and Poison Information Center, Cincinnati, OH; Central Ohio Poison Center, Columbus, OH; Greater Cleveland Poison Control Center, Cleveland, OH; Oklahoma Poison Control Center, Oklahoma City, OK; Oregon Poison Center, Portland, OR; Pittsburgh Poison Center, Pittsburgh, PA; The Poison Control Center, Philadelphia, PA; Puerto Rico Poison Center, San Juan, PR; Palmetto Poison Center, Columbia, SC; Tennessee Poison Center, Nashville, TN; Central Texas Poison Center, Temple, TX; North Texas Poison Center, Dallas, TX; Southeast Texas Poison Center, Galveston, TX; Texas Panhandle Poison Center, Amarillo, TX; West Texas Regional Poison Center, El Paso, TX; South Texas Poison Center, San Antonio, TX; Utah Poison Control Center, Salt Lake City, UT; Virginia Poison Center, Richmond, VA; Blue Ridge Poison Center, Charlottesville, VA; Washington Poison Center, Seattle, WA; West Virginia Poison Center, Charleston, WV; Wisconsin Poison Center, Milwaukee, WI.  相似文献   
567.
In June 2005, an ad hoc Expert Committee formed by the Pituitary Society convened during the 9th International Pituitary Congress in San Diego, California. Members of this committee consisted of invited international experts in the field, and included endocrinologists and neurosurgeons with recognized expertise in the management of prolactinomas. Discussions were held that included all interested participants to the Congress and resulted in formulation of these guidelines, which represent the current recommendations on the diagnosis and management of prolactinomas based upon comprehensive analysis and synthesis of all available data.  相似文献   
568.
569.
570.
A 19 year old man had congenital hypothyroidism and severely retarded development. His thyroid gland was not enlarged and laboratory findings included low serum concentration of T4 (2.8 microgram/100 ml) and T3 (16 ng/100 ml) with a high level of TSH (52 microU/ml) that rose to 192 microU/ml after TRH. 131I uptake by the thyroid was normal (41.5% at 24 h) and did not show a normal increase after exogenous TSH administration (49.5% at 24 h). The perchlorate discharge test was negative and no antibodies against thyroid antigens were found. Studies on the biopsy specimen revealed low iodide trapping by the thyroid slices and no formation of cyclic AMP after TSH was added to the medium. The endogenous TSH of the patient was biologically active increasing cyclic adenosine monophosphate c-AMP concentration in normal thyroid slices. No thyroglobulin was found in the thyroid tissue either by immunological or ultracentrifugational methods. An increased proportion of iodoalbumin was present in the serum. We postulate that the fundamental defect in this gland is an impaired generation of c-AMP by the defective thyroid cell and deficiency of thyroglobulin formation resulting in inadequate thyroxine and triiodothyronine synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号