首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   5篇
儿科学   1篇
基础医学   3篇
临床医学   5篇
内科学   7篇
药学   2篇
肿瘤学   8篇
  2014年   1篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1994年   1篇
  1993年   2篇
  1990年   1篇
  1983年   1篇
  1979年   1篇
  1970年   1篇
  1964年   1篇
排序方式: 共有26条查询结果,搜索用时 671 毫秒
21.
Imexon is an iminopyrrolidone derivative that has selective antitumor activity in multiple myeloma. The exact mechanism of imexon action is unknown. In human 8226 myeloma cells, the cytotoxicity of imexon was schedule-dependent, and long exposures (> or = 48 hr) to low concentrations of imexon were most effective at inducing cytotoxicity. Our data suggest that imexon does not affect DNA, but it can alkylate thiols by binding to the sulfhydryl group. We have also demonstrated by HPLC studies that in human 8226 myeloma cells, imexon depletes cellular stores of cysteine and glutathione. Oxidative stress in 8226 cells exposed to imexon was detected by immunohistochemical staining with a monoclonal antibody to 8-hydroxydeoxyguanosine (8-OHdG), followed by confocal microscopy. These images showed increased levels of 8-OHdG in the cytoplasm of cells treated with different concentrations of imexon at 8, 16, and 48 hr. Interestingly, 8-OHdG staining was not observed in the nuclei of imexon-treated cells, in contrast to the diffuse staining seen with t-butyl hydroperoxide. Myeloma cells exposed to imexon showed classic morphologic features of apoptosis upon electron microscopy, and increased levels of phosphatidylserine exposure, detected as Annexin-V binding, on the cell surface. To prevent depletion of thiols, 8226 myeloma cells exposed to imexon were treated with N-acetylcysteine (NAC). Simultaneous, as well as sequential, treatment with NAC before imexon exposure resulted in protection of myeloma cells against imexon-induced cytotoxicity. Conversely, the glutathione synthesis inhibitor buthionine sulfoximine increased imexon cytotoxicity. These data suggest that imexon perturbs cellular thiols and induces oxidative stress leading to apoptosis in human myeloma cells.  相似文献   
22.
The antimalaria drug, artesunate (ART), is very cytotoxic in tumor cell lines. The active moiety of ART is an endoperoxide bridge that generates carbon-centered free radicals and oxidative stress upon cleavage. Oxidative stress appears to be necessary for the antimalarial activity of ART. To test whether antioxidant gene expression affects the ART response in tumor cell lines we compared the baseline antioxidant mRNA gene expression in the 55 human tumor cell line panel from the National Cancer Institute Developmental Therapeutics Program to the ART IC50. Thioredoxin reductase expression showed a significant positive correlation to the ART IC50 and catalase expression was inversely correlated with the ART IC50 (p<0.05). WEHI7.2 mouse thymoma cells selected for resistance to hydrogen peroxide or transfected with thioredoxin, manganese superoxide dismutase, catalase or bcl-2 showed resistance to ART compared to the parental cell line. Taken together these data support a role for oxidative stress in the mechanism of ART action in tumor cells and suggest that antioxidant defenses act in combination to affect the cellular response to ART.  相似文献   
23.
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease in which approximately 40% of the patients respond well to current chemotherapy, but the prognosis for the other 60% is poor. The Leukemia/Lymphoma Molecular Profiling Project (LLMPP) used microarray technology to define a molecular profile for each of 240 patients with DLBCL and develop a molecular outcome predictor score that accurately predicted patient survival. Data from our laboratory and others suggest that alterations in antioxidant defense enzyme levels and redox environment can be oncogenic and affect the response to glucocorticoid treatment, one of the components of combination chemotherapy regimens for lymphoma. The goal of the current study was to reanalyze the LLMPP microarray data to determine whether the levels of antioxidant defense enzymes and redox proteins were correlated with prognosis in DLBCL. We found that patients with DLBCL with the worst prognosis, according to the outcome predictor score, had decreased expression of catalase, glutathione peroxidase, manganese superoxide dismutase, and VDUP1, a protein that inhibits thioredoxin activity. The data suggest that the patients with the worst prognosis combine a decrease in antioxidant defense enzyme expression with an increase in thioredoxin system function (the redox signature score).  相似文献   
24.
Molecular modes of action of cantharidin in tumor cells   总被引:8,自引:0,他引:8  
Cancer chemotherapy is often limited by patient's toxicity and tumor drug resistance indicating that new drug development and modification of existing drugs is critical for improving the therapeutic response. Traditional Chinese medicine is a rich source of potential anticancer agents. In particular, cantharidin (CAN), the active principle ingredient from the blister beetle, Mylabris, has anti-tumor activity, but the cytotoxic mechanism is unknown. In leukemia cells, cantharidin induces apoptosis by a p53-dependent mechanism. Cantharidin causes both DNA single- and double-strand breaks. Colony-forming assays with knockout and transfectant cells lines showed that DNA polymerase beta, but not ERCC1, conferred increased cell survival after cantharidin treatment, indicating that base excision repair (BER), rather than nucleotide excision repair (NER), is important for CAN-induced DNA lesions. Oxidative stress-resistant thymic lymphoma-derived WEHI7.2 variants are also more resistant to cantharidin. These data suggest that cantharidin treatment causes oxidative stress that provokes DNA damage and p53-dependent apoptosis.  相似文献   
25.
Glucocorticoids are used for the treatment of lymphoid neoplasms, taking advantage of the well-known ability of these compounds to cause apoptosis in lymphoid tissues. Previously, we have shown that dexamethasone, a synthetic glucocorticoid, causes a down-regulation of several antioxidant defense enzymes and proteins, including catalase and thioredoxin, concomitant with the induction of apoptosis in WEHI7.2 mouse thymoma cells. To test whether this down-regulation plays a critical role in the mechanism of steroid-induced apoptosis, WEHI7.2 cells were transfected with rat catalase. Two clones, expressing 1.4-fold and 2.0-fold higher catalase specific activity, respectively, when compared with vectoronly transfectants were selected for further study. An increase to 1.4-fold parental cell catalase activity delayed cell loss after dexamethasone treatment, whereas a 2.0-fold parental catalase activity prevented dexamethasone-induced cell loss for 48 h after treatment. Dexamethasone treatment of the WEHI7.2 cells stimulated a release of cytochrome c into the cytosol. Catalase-overexpressing cells showed a delay or lack of cytochrome c release from the mitochondria, which correlated temporally with the delay or prevention of cell loss in the culture after dexamethasone treatment. A decreased amount of cell death from WEHI7.2 cells overexpressing catalase was also seen in tumor xenografts in severe combined immunodeficient mice when compared with tumors from vector-only transfected cells. Similarly, thioredoxin-overexpressing WEHI7.2 cells, shown previously to be apoptosis resistant, showed decreased cell death in tumor xenografts. This resulted in larger tumors from cells overexpressing these proteins. Cell death in control transfectant tumor xenografts was primarily attributable to apoptosis. In contrast, the cell death we observed in tumors from thioredoxin- or catalase-overexpressing cells had a higher frequency of a nonapoptotic, nonnecrotic type of cell death termed para-apoptosis. These data suggest that: (a) oxidative stress plays a critical role in steroid-induced apoptosis prior to the commitment of the cells to undergo apoptosis; and (b) resistance to oxidative stress can contribute to tumor growth.  相似文献   
26.
Glucocorticoids are one component of combined treatment regimens for many types of lymphoma due to their ability to induce apoptosis in lymphoid cells. In WEHI7.2 murine thymic lymphoma cells, altering catalase and glutathione peroxidase activity by transfection or the use of chemical agents modulates the ability of glucocorticoids to induce apoptosis. This suggests that the oxidative stress response is important in determining the glucocorticoid sensitivity of the cells. For glutathione peroxidase and catalase to detoxify reactive oxygen species (ROS), reducing equivalents in the form of nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) are ultimately required. The major source of NADPH in the cell is glucose 6-phosphate dehydrogenase (G6PDH). Therefore, we created G6PDH-overexpressing WEHI7.2 variants to test whether G6PDH activity is a key determinant of glucocorticoid sensitivity in WEHI7.2 cells. G6PDH-overexpressing WEHI7.2 cells were more sensitive to oxidative stress and glucocorticoids. The G6PDH-overexpressing WEHI7.2 variants appeared similar to cells undergoing glucose deprivation with decreased adenosine triphosphate (ATP) synthesis by the mitochondria and increased basal levels of ROS. Overexpression of G6PDH also sensitized the cells to other standard lymphoma chemotherapeutics including cyclophosphamide, doxorubicin, and vincristine. The decreased ATP and elevated ROS due to G6PDH overexpression may be key factors in increasing the sensitivity of the WEHI7.2 cells to lymphoma chemotherapeutics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号