首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   366篇
  免费   15篇
  国内免费   1篇
耳鼻咽喉   2篇
儿科学   21篇
妇产科学   2篇
基础医学   65篇
口腔科学   3篇
临床医学   19篇
内科学   24篇
皮肤病学   2篇
神经病学   144篇
特种医学   15篇
外科学   37篇
综合类   9篇
预防医学   10篇
眼科学   5篇
药学   4篇
中国医学   1篇
肿瘤学   19篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   8篇
  2018年   5篇
  2017年   5篇
  2016年   5篇
  2015年   9篇
  2014年   11篇
  2013年   14篇
  2012年   14篇
  2011年   32篇
  2010年   15篇
  2009年   7篇
  2008年   12篇
  2007年   20篇
  2006年   19篇
  2005年   7篇
  2004年   19篇
  2003年   14篇
  2002年   8篇
  2001年   18篇
  2000年   12篇
  1999年   14篇
  1998年   17篇
  1997年   13篇
  1996年   12篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   11篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   6篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有382条查询结果,搜索用时 0 毫秒
311.
312.
313.
TAR DNA-binding protein 43 (TDP-43) is a major component of the inclusions in frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U). We studied TDP-43 pathology in the hippocampus and frontal cortex of autopsy brains from patients with FTLD-U (n = 68), dementia lacking distinctive histopathology (n = 4), other neurodegenerative diseases (n = 23), and controls (n = 12) using a sensitive immunohistochemistry protocol. Marked enhancement of staining of TDP-43-positive dystrophic neurites (DNs) was obtained, and we observed 2 previously unrecognized pathologic patterns (i.e. frequent long DNs in the CA1 region and frequent dot-like DNs in the neocortical layer 2) in 39% and 15% of the FTLD-U cases, respectively. Frequent long DNs, but not dot-like DNs, were significantly associated with progranulin mutations. Based on this evaluation, 4 FTLD-U cases showed no TDP-43 pathology and were reclassified as "FTLD-U, non-TDP-43 proteinopathy," and 3 cases of dementia lacking distinctive histopathology were reclassified as FTLD-U. Of the cases with other neurodegenerative diseases, 43% showed TDP-43 pathology in the hippocampus, but only 4% showed TDP-43 pathology in the frontal cortex. No TDP-43 pathology was seen in controls. These results indicate that the sensitivity of the TDP-43 immunohistochemistry method affects both the extent and type of abnormalities detected. Moreover, assessment of abnormalities in both the hippocampus and frontal cortex may be diagnostically important in FTLD-U.  相似文献   
314.
Clinicopathologic correlation studies are critically important for the field of Alzheimer disease (AD) research. Studies on human subjects with autopsy confirmation entail numerous potential biases that affect both their general applicability and the validity of the correlations. Many sources of data variability can weaken the apparent correlation between cognitive status and AD neuropathologic changes. Indeed, most persons in advanced old age have significant non-AD brain lesions that may alter cognition independently of AD. Worldwide research efforts have evaluated thousands of human subjects to assess the causes of cognitive impairment in the elderly, and these studies have been interpreted in different ways. We review the literature focusing on the correlation of AD neuropathologic changes (i.e. β-amyloid plaques and neurofibrillary tangles) with cognitive impairment. We discuss the various patterns of brain changes that have been observed in elderly individuals to provide a perspective for understanding AD clinicopathologic correlation and conclude that evidence from many independent research centers strongly supports the existence of a specific disease, as defined by the presence of Aβ plaques and neurofibrillary tangles. Although Aβ plaques may play a key role in AD pathogenesis, the severity of cognitive impairment correlates best with the burden of neocortical neurofibrillary tangles.  相似文献   
315.
316.
Frontotemporal lobar degeneration (FTLD) is clinically, pathologically and genetically heterogeneous. Three major proteins are implicated in its pathogenesis. About half of cases are characterized by depositions of the microtubule associated protein, tau (FTLD-tau). In most of the remaining cases, deposits of the transactive response (TAR) DNA-binding protein with Mw of 43 kDa, known as TDP-43 (FTLD-TDP), are seen. Lastly, about 5–10 % of cases are characterized by abnormal accumulations of a third protein, fused in sarcoma (FTLD-FUS). Depending on the protein concerned, the signature accumulations can take the form of inclusion bodies (neuronal cytoplasmic inclusions and neuronal intranuclear inclusions) or dystrophic neurites, in the cerebral cortex, hippocampus and subcortex. In some instances, glial cells are also affected by inclusion body formation. In motor neurone disease (MND), TDP-43 or FUS inclusions can present within motor neurons of the brain stem and spinal cord. This present paper attempts to critically examine the role of such proteins in the pathogenesis of FTLD and MND as to whether they might exert a direct pathogenetic effect (gain of function), or simply act as relatively innocent witnesses to a more fundamental loss of function effect. We conclude that although there is strong evidence for both gain and loss of function effects in respect of each of the proteins concerned, in reality, it is likely that each is a single face of either side of the coin, and that both will play separate, though complementary, roles in driving the damage which ultimately leads to the downfall of neurons and clinical expression of disease.  相似文献   
317.
318.
TDP-43 is characteristically accumulated in TDP-43 proteinopathies such as frontotemporal lobar degeneration and motor neurone disease, but is also present in some tauopathies, including Alzheimer’s disease, argyrophilic grain disease, and corticobasal degeneration (CBD). However, several studies have suggested that cases of progressive supranuclear palsy (PSP) lack TDP-43 pathology. We have therefore examined limbic regions of the brain in 19 PSP cases, as well as in 12 CBD cases, using phosphorylation-dependent anti-TDP-43 antibodies. We observed TDP-43-positive inclusions in five PSP cases (26%), as well as in two CBD cases (17%). The amygdala and hippocampal dentate gyrus were most frequently affected in PSP. Regional tau burden tended to be higher in TDP-43-positive PSP cases, and a significant correlation between tau and TDP-43 burden was noted in the occipitotemporal gyrus. Hippocampal sclerosis (HS) was found in 3/5 TDP-43-positive PSP cases, but HS was significantly more frequent in TDP-43-positive than TDP-43 negative PSP cases. Dementia was present in 13/19 (58%) of the PSP cases, in 4/5 TDP-43-positive cases, in all 3 TDP-43-positive cases with HS, in 1/2 TDP-43-positive cases without HS, and 7/14 cases lacking both. TDP-43 and tau were frequently colocalized in the amygdala, but not in the hippocampal dentate gyrus. Immunoblotting demonstrated the characteristic (for TDP-43 proteinopathies) 45 and 25 kDa bands and high molecular weight smear in the TDP-43-positive PSP case. These findings suggest that (1) although PSP is nominally a tauopathy, pathological TDP-43 can accumulate in the limbic system in some cases, and (2) TDP-43 pathology may be concurrent with HS.  相似文献   
319.
We describe the evolution of neuropathology in Canada, beginning with William Osler who began working in Montréal in 1874 and finishing with the major period of expansion in the 1970s. Organized services began in the 1930s, in Montréal with the neurosurgeons Wilder Penfield and William Cone, and in Toronto with Eric Linell and Mary Tom, who both began their careers as neuroanatomists. Jerzy Olszewski and Gordon Mathieson, who trained in Montréal and Toronto, drove the creation of the Canadian Association of Neuropathologists in 1960. Training guided by the Royal College of Physicians and Surgeons of Canada was formalized in 1965, with the first certifying examination in 1968 and the subsequent creation of formal structured training programs. The number of neuropathologists in Canada increased rapidly through the 1960s and 1970s, with individuals coming from both clinical neuroscience and anatomic pathology backgrounds, a pattern that persists to the present day.  相似文献   
320.
Expanded glutamine repeats of the ataxin-2 (ATXN2) protein cause spinocerebellar ataxia type 2 (SCA2), a rare neurodegenerative disorder. More recent studies have suggested that expanded ATXN2 repeats are a genetic risk factor for amyotrophic lateral sclerosis (ALS) via an RNA-dependent interaction with TDP-43. Given the phenotypic diversity observed in SCA2 patients, we set out to determine the polymorphic nature of the ATXN2 repeat length across a spectrum of neurodegenerative disorders. In this study, we genotyped the ATXN2 repeat in 3919 neurodegenerative disease patients and 4877 healthy controls and performed logistic regression analysis to determine the association of repeat length with the risk of disease. We confirmed the presence of a significantly higher number of expanded ATXN2 repeat carriers in ALS patients compared with healthy controls (OR = 5.57; P= 0.001; repeat length >30 units). Furthermore, we observed significant association of expanded ATXN2 repeats with the development of progressive supranuclear palsy (OR = 5.83; P= 0.004; repeat length >30 units). Although expanded repeat carriers were also identified in frontotemporal lobar degeneration, Alzheimer's and Parkinson's disease patients, these were not significantly more frequent than in controls. Of note, our study identified a number of healthy control individuals who harbor expanded repeat alleles (31-33 units), which suggests caution should be taken when attributing specific disease phenotypes to these repeat lengths. In conclusion, our findings confirm the role of ATXN2 as an important risk factor for ALS and support the hypothesis that expanded ATXN2 repeats may predispose to other neurodegenerative diseases, including progressive supranuclear palsy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号