首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   9篇
儿科学   20篇
妇产科学   9篇
基础医学   21篇
临床医学   17篇
内科学   96篇
皮肤病学   1篇
神经病学   24篇
特种医学   2篇
外科学   8篇
综合类   1篇
预防医学   5篇
药学   8篇
肿瘤学   1篇
  2020年   2篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   3篇
  2014年   5篇
  2013年   5篇
  2012年   23篇
  2011年   16篇
  2010年   7篇
  2009年   1篇
  2008年   8篇
  2007年   16篇
  2006年   8篇
  2005年   5篇
  2004年   5篇
  2003年   6篇
  2002年   9篇
  2001年   11篇
  2000年   11篇
  1999年   10篇
  1998年   1篇
  1997年   1篇
  1992年   3篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1980年   3篇
  1979年   7篇
  1978年   1篇
  1976年   2篇
  1974年   5篇
  1973年   2篇
  1967年   1篇
排序方式: 共有213条查询结果,搜索用时 0 毫秒
211.
The roles of GH and its receptor (GHR) in metabolic control are not yet fully understood. We studied the roles of GH and the GHR using the GHR antagonist pegvisomant for metabolic control of healthy nonobese men in fasting and nonfasting conditions. Ten healthy subjects were enrolled in a double blind, placebo-controlled study on the effects of pegvisomant on GHRH and GH-releasing peptide-6 (GHRP-6)-induced GH secretion before and after 3 days of fasting and under nonfasting conditions (n = 5). Under the condition of GHR blockade by pegvisomant in the nonfasting state, GHRP-6 (1 microg/kg) caused a increase in serum insulin (10.3 +/- 2.1 vs. 81.3 +/- 25.4 mU/L; P < 0.001) and glucose (4.2 +/- 0.3 vs. 6.0 +/- 0.6 mmol/L; P < 0.05) concentrations. In this group, a rapid decrease in serum free fatty acids levels was also observed. These changes were not observed under GHR blockade during fasting or in the absence of pegvisomant. We conclude that although these results were obtained from an acute study, and long-term administration of pegvisomant could render different results, blockade of the GHR in the nonfasting state induces tissue-specific changes in insulin sensitivity, resulting in an increase in glucose and insulin levels (indicating insulin resistance of liver/muscle), but probably also in an increase in lipogenesis (indicating normal insulin sensitivity of adipose tissue). These GHRP-6-mediated changes indicate that low GH bioactivity on the tissue level can induce changes in metabolic control, which are characterized by an increase in fat mass and a decrease in lean body mass. As a mechanism of these GHRP-6-mediated metabolic changes in the nonfasting state, direct nonpituitary-mediated GHRP-6 effects on the gastroentero-hepatic axis seem probable.  相似文献   
212.
The GH-IGF axis has profound effects on the local and systemic regulation of bone metabolism and may be important for quality of fracture healing. To test the hypothesis that deficiency of the GH/IGF axis may play a role in the pathogenesis of fracture non-union we investigated whether alterations of serum concentrations of the GH-IGF axis could be related to failed fracture healing compared to timely fracture healing in trauma patients. Serum probes were prospectively collected from 186 patients with surgical treatment of long bone fractures up to 6 months after surgery. Samples from 14 patients with atrophic type of non-union have been compared to 14 matched patients with normal bone healing. Postoperative time courses of serum concentrations have been analyzed using commercially available chemiluminescence sandwich assays (GH), fully automated assay systems (IGF-I, IGFBP-3) or sandwich immunometric assays (ALS). Comparison between both collectives revealed significantly lower serum concentrations of GH dependent ALS during early (1st week after surgery) and of both IGFBP-3 and ALS during late stages of fracture healing (6 and 8 weeks after surgery) in non-union patients, coinciding clinically with failed fracture healing. Tendentially lower serum levels of IGF-I in the non-union group over the entire investigation period were statistically not significant. We have been able to show time courses of serum concentrations of the GH/IGF-I axis during normal and failed fracture healing in humans. An impairment of the GH/IGF-I axis might be involved in the biochemical mechanisms determining delayed or failed fracture healing.  相似文献   
213.
Panels of monoclonal antibodies (mAbs) were raised against recombinant human leptin and the recombinant human soluble leptin receptor. Using these mAbs, we established a ligand-mediated immunofunctional assay (LIFA) to quantify concentrations of the soluble leptin receptor, which has been shown to be a major binding protein for leptin in human serum. In performing the assay, a monoclonal antibody (mAb 2H6) against the soluble leptin receptor, which binds an epitope outside the leptin-binding site and equally recognizes both, free and leptin-occupied soluble leptin receptor, is used to capture the soluble leptin receptor on a microtiter plate. Recombinant human leptin is added to saturate all binding sites, and a biotinylated anti-leptin mAb (4D3) detects the amount of leptin (endogenous and exogenous) bound to the soluble leptin receptor. The same procedure, but without adding exogenous leptin, allows for measurement of the circulating endogenous leptin/soluble leptin receptor complexes. The LIFA assay has a linear working range of 0.5-200 microg/liter, intra- and interassay coefficients of variation ranged from 3.2-6.3% and from 5.2-7.9%, respectively. The assay has a linearity of 102.2 +/- 5.2% (mean +/- SD) and a recovery of 100.7 +/- 6.9%. Size-exclusion chromatography revealed that the assay measures a protein with a main peak eluted at 340 kDa. The soluble leptin receptor concentration (63.3 +/- 22.8 microg/liter (mean +/- SD), range 17.9-129.2 microg/liter, n = 43) in normal subjects (body mass index = 22.3 +/- 2.3 kg/m(2)) was not different from the concentration (54.4 +/- 19.8 microg/liter, range 23.7-104.8 microg/liter, n = 34, P > 0.05) found in obese subjects (body mass index = 40.9 +/- 15.7 kg/m(2)). However, the percentage of the total soluble leptin receptor complexed with endogenous leptin was significantly higher in obese subjects, compared with normal subjects (74.9% +/- 23.5% vs. 33.1% +/- 19.5%, P < 0.001). Higher serum leptin levels in obese subjects (38.4 +/- 23.7 microg/liter vs. 7.8 +/- 5.5 microg/liter in normal subjects, P < 0.001) together with comparable soluble leptin receptor levels result in a lower proportion of leptin bound to the soluble leptin receptor in obese subjects (19.3% +/- 19.4%, range 4.9-97.2%) than in normal subjects (39.0% +/- 22.5%, range 15.3-96.5%, P < 0.001). The development of this LIFA for the rapid and accurate quantification of total soluble leptin receptor and circulating leptin/soluble leptin receptor complexes provides a valuable tool for the further understanding of the role of leptin and its soluble receptor in health and disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号