T-cell receptor (TCR) repertoire diversity, thymic output, clonal size and peripheral T-lymphocyte numbers largely depend on intra-thymic and post-thymic T-lymphocyte proliferation. However, quantitative insight into thymocyte and T-lymphocyte proliferation is still lacking. We developed a new TCRG-based TCR excision circle (TREC) assay, the Vγ-Jγ TREC assay, which we used together with an adjusted δREC-ψJα TREC assay to quantify the proliferative history of human thymocyte and T-lymphocyte subpopulations from children and adults. This revealed that thymocytes undergo ~6–8 intra-thymic cell divisions from the double negative (DN) 3 developmental stage onwards, which appeared independent of age. Thus thymocyte proliferation after the DN3 developmental stages is stable and therefore not contributing to the reduced thymic output upon ageing. Cord blood naive T lymphocytes had already undergone ~2–3 post-thymic cell divisions, which increased to ~6–7 cell divisions in naive T lymphocytes of middle-aged adults, indicating the importance of homeostatic naive T-lymphocyte proliferation from a young age onwards in the maintenance of peripheral T-lymphocyte numbers. In conclusion, our data provide quantitative insight into the proliferative history of thymocyte and T-lymphocyte subpopulations and alterations herein upon ageing. This novel TREC assay approach could prove valuable in immune status monitoring in a variety of conditions. 相似文献
Interplay between complement factors, regulatory proteins, anaphylatoxins and cytokines could be involved in tendon healing and scar formation. The expression and regulation of complement factors by cytokines or anaphylatoxins are completely unclear in tendon.Hence, the gene expression of the anaphylatoxin receptors C3aR, C5aR and cytoprotective complement regulatory proteins (CRPs) was analysed in human tendon, cultured primary tenocytes and to directly compare the general expression level, additionally in human leukocytes. Time-dependent regulation of complement by cytokines and the anaphylatoxin C3a was assessed in cultured tenocytes.Gene expression of the anaphylatoxin receptors C3aR, C5aR and the CRPs CD46, CD55 and CD59 was detected in tendon, cultured tenocytes and leukocytes, whereas CD35 could only be found in tendon and leukocytes. Compared with cultured tenocytes, complement expression was higher in tendon and compared with leukocytes C3aR, C5aR, CD35 and CD55, but not CD46 and CD59 gene expression levels were lower in tendon. C3aR mRNA was up-regulated by both TNFα and C3a in cultured tenocytes in a time-dependent manner whereby C5aR gene expression was only induced by C3a. IL-6 or C3a impaired the CRP gene expression. C3a stimulation lead to an up-regulation of TNFα and IL-1β mRNA in tenocytes. Degenerated tendons revealed an increased C5aR and a reduced CD55 expression.The expression profile of the investigated complement components in tendon and cultured tenocytes clearly differed from that of leukocytes. Tenocytes respond to the complement split fragment C3a with CRP suppression and enhanced pro-inflammatory cytokine gene expression suggesting their sensitivity to complement activation. 相似文献
The sinonasal microbiome remains poorly defined, with our current knowledge based on a few cohort studies whose findings are inconsistent. Furthermore, the variability of the sinus microbiome across geographical divides remains unexplored. We characterize the sinonasal microbiome and its geographical variations in both health and disease using 16S rRNA gene sequencing of 410 individuals from across the world. Although the sinus microbial ecology is highly variable between individuals, we identify a core microbiome comprised of Corynebacterium, Staphylococcus, Streptococcus, Haemophilus and Moraxella species in both healthy and chronic rhinosinusitis (CRS) cohorts. Corynebacterium (mean relative abundance = 44.02%) and Staphylococcus (mean relative abundance = 27.34%) appear particularly dominant in the majority of patients sampled. Amongst patients suffering from CRS with nasal polyps, a statistically significant reduction in relative abundance of Corynebacterium (40.29% vs 50.43%; P = .02) was identified. Despite some measured differences in microbiome composition and diversity between some of the participating centres in our cohort, these differences would not alter the general pattern of core organisms described. Nevertheless, atypical or unusual organisms reported in short-read amplicon sequencing studies and that are not part of the core microbiome should be interpreted with caution. The delineation of the sinonasal microbiome and standardized methodology described within our study will enable further characterization and translational application of the sinus microbiota. 相似文献
Common sugar alcohols used as artificial sweeteners and components of polymer networks represent low molecular weight polyhydroxymethylenes (PHMs) with the general formula [CH(OH)]nH2 but very low degree of polymerization (n = 2–6). Herein high molecular weight PHM (n >> 100) unparalleled in nature is tailored for 3D printing and medical applications by free radical polymerization of 1,3‐dioxol‐2‐one vinylene carbonate to produce polyvinylene carbonate (PVCA) which yields PHM by hydrolysis. Furthermore, PVCA is solution processable and enables PHM functionalization, membrane formation, and extrusion‐based 3D printing. Opposite to cellulose, amorphous PHM is plasticized by water and is readily functionalized via PVCA aminolysis/hydrolysis to produce polyhydroxymethylene urethane (PHMU), enable PHM crosslinking and coupling of PHM with amine‐functional components like gelatin. After hydrolysis/aminolysis the original PVCA shapes are retained. PVCA solution casting yields PVCA and PHM which exhibits uniform and hierarchic pore architectures. Asymmetric membranes, hydrogels, PHM/collagen blends, and electrospun nonwovens of PVCA, PHM, and PHMU are readily tailored for medical applications. 3D printing of PVCA dispersions containing hydroxyapatite affords porous PVCA, PHMU, and PHM scaffolds useful in regenerative medicine. PHM and functionalized PHMs as carbohydrate‐inspired multifunctional materials indicate in vitro biocompatibility and hold great promise for applications in medicine and health care. 相似文献
ABSTRACTA study was conducted to evaluate mucoadhesive property and immunomodulatory effect of phytogenic gums from Boswellia frereana, Boswellia carteri andCommiphora myrrha on intranasal Peste des petits ruminants (PPR) vaccination in goats and sheep in an ex-vivo and in-vivo situations. Plant gums were purified, dried and compressed into 500gm tablets. Modified shear stress measurement technique was used on freshly excised trachea and intestine tissues of goat to measure peak adhesion time. Forty eight animals (24 goats and 24 sheep) were divided into eight groups (of 3 goats and 3 sheep) and immunized intranasally with gum-vaccine combinations in two ratios (1:1, 1:2). Antibody against PPR virus was measured on day 14, 28, 42 and 56 post vaccination using H-based PPR bELISA. The peak adhesion time of the different gums was transient. PPR virus antibodies were detected in all immunized goats and sheep but not in unvaccinated control. The best percentage inhibition was recorded for Boswellia carteri-vaccine combination group at a ratio of 1:1. Administration of Boswellia carteri-PPR vaccine combination through intranasal or subcutaneous route, elicited similar antibody titre, implying that the intranasal route may be used as a non-invasive alternative delivery in PPR vaccination of small ruminants. 相似文献
PurposeHaploinsufficiency of PSMD12 has been reported in individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), facial dysmorphism, and congenital malformations, defined as Stankiewicz-Isidor syndrome (STISS). Investigations showed that pathogenic variants in PSMD12 perturb intracellular protein homeostasis. Our objective was to further explore the clinical and molecular phenotypic spectrum of STISS.MethodsWe report 24 additional unrelated patients with STISS with various truncating single nucleotide variants or copy-number variant deletions involving PSMD12. We explore disease etiology by assessing patient cells and CRISPR/Cas9-engineered cell clones for various cellular pathways and inflammatory status.ResultsThe expressivity of most clinical features in STISS is highly variable. In addition to previously reported DD/ID, speech delay, cardiac and renal anomalies, we also confirmed preaxial hand abnormalities as a feature of this syndrome. Of note, 2 patients also showed chilblains resembling signs observed in interferonopathy. Remarkably, our data show that STISS patient cells exhibit a profound remodeling of the mTORC1 and mitophagy pathways with an induction of type I interferon-stimulated genes.ConclusionWe refine the phenotype of STISS and show that it can be clinically recognizable and biochemically diagnosed by a type I interferon gene signature. 相似文献
Recent studies reported the presence of pre-existing autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) in at least 15% of patients with critical COVID-19 pneumonia. In one study, these auto-Abs were found in almost 20% of deceased patients across all ages. We aimed to assess the prevalence and clinical impact of the auto-Abs to type I IFNs in the Seine-Saint-Denis district, which was one of the most affected areas by COVID-19 in France during the first wave. We tested for the presence of auto-Abs neutralizing type I IFNs in a cohort of patients admitted for critical COVID-19 pneumonia during the first wave in the spring of 2020 in the medicine departments at Robert Ballanger Hospital, Aulnay sous Bois. We found circulating auto-Abs that neutralized 100 pg/mL IFN-α2 and/or IFN-ω in the plasma (diluted 1/10) of 7.9% (11 of 139) of the patients hospitalized for critical COVID-19. The presence of neutralizing auto-Abs was associated with an increased risk of mortality, as these auto-Abs were detected in 21% of patients who died from COVID-19 pneumonia. Deceased patients with and without auto-Abs did not present overt clinical differences. These results confirm both the importance of type I IFN immunity in host defense against SARS-CoV-2 infection and the usefulness of detection of auto-Abs neutralizing type I IFNs in the management of patients.
Typical properties of poly(D,L-lactide) (PLA)-based scaffolds (films and foams), such as long degradation time, mechanical stiffness and hydrophobicity, are sometimes not suitable for biomedical applications. These properties can be substantially altered by electrospinning of PLA blends with miscible poly(lactide-co-glycolide) (PLGA) random copolymers, poly(lactide-b-ethylene glycol-b-lactide) (PLA-b-PEG-b-PLA) triblock copolymers, and a lactide (used as a hydrolytic catalyst). Electrospun scaffolds based on the multi-component PLA blends, comprised of randomly interconnected webs of sub-micron sized fibers, have a bulk density of 0.3-0.4 g/cm3. In this study, the concentration effects of PLA-b-PEG-b-PLA triblock copolymer and lactide on the cell proliferation and the hydrophilicity of electrospun scaffolds were investigated. Based on in vitro degradation study, we found that the electrospun scaffold having PLA (40 wt%), PLGA (LA/GA=50/50, 25 wt%), PLA-b-PEG-b-PLA (20 wt%), and lactide (15 wt%) underwent a rapid weight loss of approximately 65% in 7 weeks. The hydrophobicity of this membrane, as determined by contact angle measurements in a cell buffer solution, decreased by approximately 50% from 105 degrees (of an electrospun PLA scaffold) to 50 degrees. The selection of suitable chemical compositions in conjunction with the non-invasive electrospinning process is useful in the production of a new kind of biodegradable scaffolds suitable for different biomedical applications such as cell storage and delivery as well as prevention of post-surgical adhesion because of their porosity, mechanical flexibility and tunable biodegradability. 相似文献