首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   6篇
儿科学   14篇
妇产科学   16篇
基础医学   35篇
临床医学   10篇
内科学   20篇
神经病学   122篇
特种医学   2篇
外科学   22篇
综合类   1篇
预防医学   7篇
药学   66篇
中国医学   1篇
肿瘤学   1篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   4篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   3篇
  2014年   4篇
  2013年   12篇
  2012年   20篇
  2011年   19篇
  2010年   17篇
  2009年   12篇
  2008年   14篇
  2007年   18篇
  2006年   18篇
  2005年   12篇
  2004年   4篇
  2003年   6篇
  2002年   15篇
  2001年   17篇
  2000年   7篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1936年   2篇
  1932年   3篇
  1931年   5篇
  1930年   6篇
  1929年   6篇
  1928年   9篇
  1927年   2篇
  1926年   2篇
  1923年   5篇
  1922年   5篇
  1921年   1篇
  1914年   2篇
  1913年   2篇
  1912年   2篇
  1911年   1篇
  1905年   1篇
排序方式: 共有317条查询结果,搜索用时 0 毫秒
51.
52.
Manganese (Mn) is a ubiquitous and essential element that can be toxic at high doses. In individuals exposed to high levels of this metal, Mn can accumulate in various brain regions, leading to neurotoxicity. In particular, Mn accumulation in the mid-brain structures, such as the globus pallidus and striatum, can lead to a Parkinson's-like movement disorder known as manganism. While the mechanism of this toxicity is currently unknown, it has been postulated that Mn may be involved in the generation of reactive oxygen species (ROS) through interaction with intracellular molecules, such as superoxide and hydrogen peroxide, produced within mitochondria. Conversely, Mn is a required component of an important antioxidant enzyme, Mn superoxide dismutase (MnSOD), while glutamine synthetase (GS), a Mn-containing astrocyte-specific enzyme, is exquisitely sensitive to oxidative stress. To investigate the possible role of oxidative stress in Mn-induced neurotoxicity, a series of inhalation studies was performed in neonatal and adult male and female rats as well as senescent male rats exposed to various levels of airborne-Mn for periods of time ranging from 14 to 90 days. Oxidative stress was then indirectly assessed by measuring glutathione (GSH), metallothionein (MT), and GS levels in several brain regions. MT and GS mRNA levels and regional brain Mn concentrations were also determined. The collective results of these studies argue against extensive involvement of ROS in Mn neurotoxicity in rats of differing genders and ages. There are, however, instances of changes in individual endpoints consistent with oxidative stress in certain brain tissues.  相似文献   
53.
Methylmercury (MeHg) is an environmental neurotoxicant associated with aberrant central nervous system (CNS) functions. In this study, we examined the protective effect of a novel anti-inflammatory and cytoprotective nonapeptide, termed IIIM1, against MeHg-induced toxicity in cultured rat neonatal primary astrocytes. Astrocytes were pretreated for 66 h with 5 μg/ml IIIM1 (4.95 μM) followed by 6 h exposure to MeHg (5 μM). MeHg significantly increased F(2)-isoprostane generation, a lipid peroxidation biomarker of oxidative injury and this effect was significantly reduced upon pre-treatment with IIIM1. The MeHg-induced increase in levels of prostaglandin E(2) (PGE(2)), biomarkers of inflammatory responses, was also decreased in the peptide-treated cells. Mass spectrometry analysis revealed no chemical or binding interaction between MeHg and IIIM1, indicating that intracellular cytoprotective mechanism of action accounts for the neuroprotection rather than direct intracellular neutralization of the neurotoxicant with the peptide. These findings point to therapeutic potential for IIIM1 in a plethora of conditions associated with reactive oxygen species (ROS) generation. The implication of these findings may prove beneficial in designing new treatment modalities that efficiently suppress neurotoxicity, triggered not only by MeHg, but also by other metals and environmental agents, as well as chronic disease conditions that inherently increase reactive radical production and inflammatory signaling.  相似文献   
54.
55.
56.
57.
Mercury (Hg) toxicity continues to represent a global health concern. Given that human populations are mostly exposed to low chronic levels of mercurial compounds (methylmercury through fish, mercury vapor from dental amalgams, and ethylmercury from vaccines), the need for more sensitive and refined tools to assess the effects and/or susceptibility to adverse metal-mediated health risks remains. Traditional biomarkers, such as hair or blood Hg levels, are practical and provide a reliable measure of exposure, but given intra-population variability, it is difficult to establish accurate cause–effect relationships. It is therefore important to identify and validate biomarkers that are predictive of early adverse effects prior to adverse health outcomes becoming irreversible. This review describes the predominant biomarkers used by toxicologists and epidemiologists to evaluate exposure, effect and susceptibility to Hg compounds, weighing on their advantages and disadvantages. Most importantly, and in light of recent findings on the molecular mechanisms underlying Hg-mediated toxicity, potential novel biomarkers that might be predictive of toxic effect are presented, and the applicability of these parameters in risk assessment is examined.  相似文献   
58.
Chronic exposure to manganese (Mn) may lead to a movement disorderdue to preferential Mn accumulation in the globus pallidus andother basal ganglia nuclei. Iron (Fe) deficiency also resultsin increased brain Mn levels, as well as dysregulation of othertrace metals. The relationship between Mn and Fe transport hasbeen attributed to the fact that both metals can be transportedvia the same molecular mechanisms. It is not known, however,whether brain Mn distribution patterns due to increased Mn exposurevs. Fe deficiency are the same, or whether Fe supplementationwould reverse or inhibit Mn deposition. To address these questions,we utilized four distinct experimental populations. Three separategroups of male Sprague–Dawley rats on different diets(control diet [MnT], Fe deficient [FeD], or Fe supplemented[FeS]) were given weekly intravenous Mn injections (3 mg Mn/kgbody mass) for 14 weeks, whereas control (CN) rats were fedthe control diet and received sterile saline injections. Atthe conclusion of the study, both blood and brain Mn and Felevels were determined by atomic absorption spectroscopy andmagnetic resonance imaging. The data indicate that changes indietary Fe levels (either increased or decreased) result inregionally specific increases in brain Mn levels compared withCN or MnT animals. Furthermore, there was no difference in eitherFe or Mn accumulation between FeS or FeD animals. These datasuggest that dietary Fe manipulation, whether increased or decreased,may contribute to brain Mn deposition in populations vulnerableto increased Mn exposure.  相似文献   
59.
Autophagy is an evolutionarily conserved process in which cytoplasmic proteins and organelles are degraded and recycled for reuse. There are numerous reports on the role of autophagy in cell growth and death; however, the role of autophagy in methylmercury (MeHg)-induced neurotoxicity has yet to be identified. We studied the role of autophagy in MeHg-induced neurotoxicity in astrocytes. MeHg reduced astrocytic viability in a concentration- and time-dependent manner, and induced apoptosis. Pharmacological inhibition of autophagy with 3-methyladenine or chloroquine, as well as the silencing of the autophagy-related protein 5, increased MeHg-induced cytotoxicity and the ratio of apoptotic astrocytes. Conversely, rapamycin, an autophagy inducer, along with as N-acetyl-l-cysteine, a precursor of reduced glutathione, decreased MeHg-induced toxicity and the ratio of apoptotic astrocytes. These results indicated that MeHg-induced neurotoxicity was reduced, at least in part, through the activation of autophagy. Accordingly, modulation of autophagy may offer a new avenue for attenuating MeHg-induced neurotoxicity.  相似文献   
60.
Reactive oxygen species (ROS) have been implicated in the pathogenesis of pulmonary hypertension. ROS might mediate vascular responses, at least in part, by stimulating prostanoid production. Our goals were to determine whether the effect of ROS on vascular tone is altered in resistance pulmonary arteries (PRAs) of newborn piglets with chronic hypoxia-induced pulmonary hypertension and the role, if any, of prostanoids in ROS-mediated responses. In cannulated, pressurized PRA, ROS generated by xanthine (X) plus xanthine oxidase (XO) had minimal effect on vascular tone in control piglets but caused significant vasoconstriction in hypoxic piglets. Both cyclooxygenase inhibition with indomethacin and thromboxane synthase inhibition with dazoxiben significantly blunted constriction to X+XO in hypoxic PRA. X+XO increased prostacyclin production (70 ± 8%) by a greater degree than thromboxane production (50 ± 6%) in control PRA; this was not the case in hypoxic PRA where the increases in prostacyclin and thromboxane production were not statistically different (78 ± 13% versus 216 ± 93%, respectively). Thromboxane synthase expression was increased in PRA from hypoxic piglets, whereas prostacyclin synthase expression was similar in PRA from hypoxic and control piglets. Under conditions of chronic hypoxia, altered vascular responses to ROS may contribute to pulmonary hypertension by a mechanism that involves the prostanoid vasoconstrictor, thromboxane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号