首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45988篇
  免费   4467篇
  国内免费   3656篇
耳鼻咽喉   423篇
儿科学   486篇
妇产科学   635篇
基础医学   5478篇
口腔科学   1012篇
临床医学   5996篇
内科学   6830篇
皮肤病学   516篇
神经病学   2424篇
特种医学   1741篇
外国民族医学   20篇
外科学   4748篇
综合类   7906篇
现状与发展   15篇
一般理论   6篇
预防医学   3101篇
眼科学   1206篇
药学   4696篇
  28篇
中国医学   2889篇
肿瘤学   3955篇
  2024年   152篇
  2023年   699篇
  2022年   1848篇
  2021年   2302篇
  2020年   1768篇
  2019年   1489篇
  2018年   1611篇
  2017年   1483篇
  2016年   1363篇
  2015年   2032篇
  2014年   2573篇
  2013年   2218篇
  2012年   3233篇
  2011年   3542篇
  2010年   2151篇
  2009年   1786篇
  2008年   2259篇
  2007年   2333篇
  2006年   2300篇
  2005年   2100篇
  2004年   1726篇
  2003年   1845篇
  2002年   1663篇
  2001年   1411篇
  2000年   1248篇
  1999年   1324篇
  1998年   888篇
  1997年   816篇
  1996年   645篇
  1995年   591篇
  1994年   513篇
  1993年   265篇
  1992年   351篇
  1991年   291篇
  1990年   272篇
  1989年   221篇
  1988年   213篇
  1987年   177篇
  1986年   148篇
  1985年   92篇
  1984年   77篇
  1983年   33篇
  1982年   18篇
  1981年   15篇
  1980年   14篇
  1979年   6篇
  1978年   2篇
  1970年   1篇
  1969年   1篇
  1964年   1篇
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
991.
992.
993.
994.
Shi  Man-man  Wang  Jian-li  Zhang  Li-qiang  Qin  Mei  Huang  Yong-wei 《Sleep & breathing》2020,24(2):745-750
Purpose

We sought to unravel the role of hydrogen sulfide (H2S) in the development of hypertension in patients with obstructive sleep apnea (OSA).

Methods

The study sample included 80 patients with OSA and 45 healthy controls. All subjects underwent measurement of blood pressure (BP) and serum H2S level in the morning. Twentynine of the 39 patients with OSA and concomitant hypertension and 23 of the 41 patients with OSA but no concomitant hypertension received continuous positive alveolar pressure (CPAP) therapy for 4 weeks. Twenty-four-hour ambulatory BP and serum H2S were determined before and after CPAP. Respiratory indices including apnea hypopnea index (AHI), lowest oxygen saturation (SaO2), and length of time < 90% saturated (T90) were determined by polysomnography.

Results

Associations between H2S, BP, respiratory indices, and changes with CPAP were analyzed. OSA patients had significantly higher systolic BP (p = 0.003) and diastolic BP (p = 0.009) and lower H2S levels (p = 0.02) compared to healthy controls. H2S negatively correlated with AHI (p = 0.005), T90 (p = 0.009), morning systolic BP (p = 0.02), and morning diastolic BP (p = 0.03). All respiratory indices were significantly improved (p < 0.05) after CPAP in OSA patients with or without hypertension. BP was significantly reduced and H2S significantly increased after CPAP in OSA patients with hypertension (p < 0.05) but not in OSA patients without hypertension (p > 0.05).

Conclusion

Multivariate linear regression analysis demonstrated that 24h systolic BP and 24h diastolic BP correlated with H2S as well as their changes after CPAP treatment. Reduction in H2S may play a role in the pathogenesis of hypertension in patients with OSA.

  相似文献   
995.
996.
997.
We describe a microchip designed to quantify the levels of a dozen cytoplasmic and membrane proteins from single cells. We use the platform to assess protein–protein interactions associated with the EGF-receptor-mediated PI3K signaling pathway. Single-cell sensitivity is achieved by isolating a defined number of cells (n = 0–5) in 2 nL volume chambers, each of which is patterned with two copies of a miniature antibody array. The cells are lysed on-chip, and the levels of released proteins are assayed using the antibody arrays. We investigate three isogenic cell lines representing the cancer glioblastoma multiforme, at the basal level, under EGF stimulation, and under erlotinib inhibition plus EGF stimulation. The measured protein abundances are consistent with previous work, and single-cell analysis uniquely reveals single-cell heterogeneity, and different types and strengths of protein–protein interactions. This platform helps provide a comprehensive picture of altered signal transduction networks in tumor cells and provides insight into the effect of targeted therapies on protein signaling networks.Although signal transduction inhibitors occasionally offer clinical benefit for cancer patients (1), signal flux emanating from oncogenes is often distributed through multiple pathways (2), potentially underlying the failure of most such inhibitors (3). Measuring signal flux through multiple pathways, in response to signal transduction inhibitors, may help uncover network interactions that contribute to therapeutic resistance and that are not predicted by analyzing pathways in isolation (4). The cellular and molecular complexity of a solid tumor microenvironment (5) suggests the need to study signaling in individual cancer cells.Protein–protein interactions within signaling pathways are often elucidated by assessing the levels of relevant pathway proteins in model and tumor-derived cell lines and with various genetic and molecular perturbations. Such interactions, and the implied signaling networks, may also be elucidated via quantitative measurements of multiple pathway-related proteins within single cells (6). At the single-cell level, inhibitory and activating protein–protein relationships, as well as stochastic (single-cell) fluctuations, are revealed. However, most techniques for profiling signaling pathways (7, 8) require large numbers of cells. Single-cell immunostaining (9) is promising, and some flow cytometry (6) techniques are relevant, as discussed below.We describe quantitative, multiplex assays of intracellular signaling proteins from single cancer cells using a platform called the single-cell barcode chip (SCBC). The SCBC is simple in concept: A single or defined number of cells is isolated within an approximately 2 nL volume microchamber that contains an antibody array (10) for the capture and detection of a panel of proteins. The SCBC design (11) permits lysis of each individual trapped cell.Intracellular staining flow cytometry can assay up to 11 phosphoproteins from single cells (6). Our SCBC can profile a similar size panel, but only for approximately 100 single cells per chip. Each protein is assayed twice, yielding some statistical assessment for each experiment. The SCBC is a relatively simple platform and only requires a few hundred cells per assay.We used the SCBC to study signal transduction in glioblastoma multiforme (GBM), a primary malignant brain tumor (12). GBM has been genetically characterized, yet the nature of signaling pathways downstream of key oncogenic mutations, such as epidermal growth factor receptor activating mutation (EGFRvIII) and phosphatase and tensin homolog (PTEN) tumor suppressor gene loss associated with receptor tyrosine kinase (RTK)/PI3K signaling, are incompletely understood (1315). Single-cell experiments may also help resolve the characteristic heterogeneity of GBM.We interrogated 11 proteins directly or potentially associated with PI3K signaling (see SI Appendix, Methods I) through three isogenic GBM cell lines: U87 (expressing wild-type p53, mutant PTEN, and low levels of wild-type EGFR, no EGFRvIII) (16, 17), U87 EGFRvIII (U87 cells stably expressing EGFRvIII deletion mutant), and U87 EGFRvIII PTEN (U87 cells coexpressing EGFRvIII and PTEN) (18). Fig. 1 diagrams this biology. Each cell line was investigated under conditions of standard cell culture, in response to EGF stimulation, and after erlotinib treatment followed by EGF stimulation. The proteins assayed represented RTKs and proteins signifying activation of PI3K and MAPK signaling. They were (p- denotes phosphorylation) p-Src, p-mammalian target of rapamycin (p-mTOR), p-p70 ribosomal protein S6 kinase (p-p70S6K), p-glycogen synthase kinase-3 (p-GSK-3α/β), p-p38 mitogen activated protein kinase (p-p38α), p-extracellular regulated kinase (p-ERK), p-c-Jun N-terminal kinase (p-JNK2), p-platelet derived growth factor receptor β (p-PDGFRβ), p-vascular endothelial growth factor receptor 2 (p-VEGFR2), tumor protein 53 (P53), and total EGFR.Open in a separate windowFig. 1.The PI3K pathway activated by EGF-stimulated EGFR or by the constitutively activated EGFRvIII. All proteins in light blue with central yellow background were assayed. Orange background proteins were expressed in the cell lines U87 EGFRvIII or U87 EGFRvIII PTEN. The oval, yellow background components are the investigated molecular perturbations.  相似文献   
998.
999.
1000.
The purpose of this study was to analyse the causes of venous compromise and flap failure in radial forearm free flap (RFFF) surgery for intraoral reconstruction. One hundred seventy-eight RFFF reconstructions were reviewed retrospectively for intraoral defects. Of the 13 flaps with venous obstruction, 9 flaps were salvaged, and 4 were lost, with a salvage rate of 69.2%. Eleven venous occlusions occurred within the first 72h. The main reasons for venous failure were mechanical obstruction or technical errors due to inadequate pedicle length and geometry, inadequate venous drainage, compression and kinking of the vein. The main cause of failure for oropharynx reconstruction was unrecognized vascular events due to the lack of reliable monitoring for buried flap. Oozing of dusky blood from the flap margin may be directly related to venous congestion in the early postoperative period and a late indication of a change in skin colour. In conclusion, a thorough operative plan, including carefully selected drainage vein for the flap and recipient vessels, adequate pedicle length and geometry, precise surgical technique, avoidance of haematoma, and expert monitoring of buried flaps may improve the success rate of RFFF transfer in intraoral reconstruction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号