首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2522篇
  免费   169篇
  国内免费   18篇
耳鼻咽喉   23篇
儿科学   143篇
妇产科学   68篇
基础医学   369篇
口腔科学   83篇
临床医学   229篇
内科学   542篇
皮肤病学   53篇
神经病学   161篇
特种医学   67篇
外科学   300篇
综合类   28篇
一般理论   2篇
预防医学   154篇
眼科学   114篇
药学   154篇
中国医学   13篇
肿瘤学   206篇
  2024年   5篇
  2023年   52篇
  2022年   91篇
  2021年   158篇
  2020年   96篇
  2019年   121篇
  2018年   144篇
  2017年   112篇
  2016年   111篇
  2015年   91篇
  2014年   124篇
  2013年   173篇
  2012年   241篇
  2011年   206篇
  2010年   141篇
  2009年   81篇
  2008年   151篇
  2007年   135篇
  2006年   113篇
  2005年   84篇
  2004年   97篇
  2003年   69篇
  2002年   59篇
  2001年   6篇
  2000年   7篇
  1999年   5篇
  1998年   9篇
  1997年   5篇
  1996年   4篇
  1995年   6篇
  1994年   4篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1976年   2篇
排序方式: 共有2709条查询结果,搜索用时 15 毫秒
11.
Heroin use and addiction pose serious risks and side effects due to overdose. Quantification of heroin in biological samples is challenging due to rapid deacetylation of heroin to its active metabolites. In this study, we report the quantification of metabolic degradation of heroin by-products in biological urine samples. The presence of the drug was monitored after oral administration of heroin at different time intervals. Various biophysical techniques, such as high performance liquid chromatography (HPLC) and mass spectrometry (MS) were used to evaluate the presence of the drug. A competitive fluorescence based immunoassay was developed with a limit of detection (LOD) up to 0.01 ng mL−1 and the IC50 value was 0.1 ng mL−1, while the dipstick assay shows a LOD up to 5 ng mL−1. Rapid detection of narcotic drugs was carried out for biological urine samples collected at various time points. Validation of the developed dipstick was carried out for the standard as well as the spiked urine samples by fluorescence based immunoassay (FIA), using anti-morphine antibodies. A strong correlation (R = 0.94) was obtained between the developed dipstick and FIA assay for biological urine samples collected at various time points. The developed immunochromatographic dipstick is highly sensitive, field applicable and cost effective, and can serve as a first choice for the monitoring of narcotic drugs in blood, urine and saliva in drug addicts and athletes.

Pathway of heroin degradation post oral administration in mice.  相似文献   
12.
Both Duchenne and golden retriever muscular dystrophy (GRMD) are caused by dystrophin deficiency. The Duchenne muscular dystrophy sartorius muscle and orthologous GRMD cranial sartorius (CS) are relatively spared/hypertrophied. We completed hierarchical clustering studies to define molecular mechanisms contributing to this differential involvement and their role in the GRMD phenotype. GRMD dogs with larger CS muscles had more severe deficits, suggesting that selective hypertrophy could be detrimental. Serial biopsies from the hypertrophied CS and other atrophied muscles were studied in a subset of these dogs. Myostatin showed an age-dependent decrease and an inverse correlation with the degree of GRMD CS hypertrophy. Regulators of myostatin at the protein (AKT1) and miRNA (miR-539 and miR-208b targeting myostatin mRNA) levels were altered in GRMD CS, consistent with down-regulation of myostatin signaling, CS hypertrophy, and functional rescue of this muscle. mRNA and proteomic profiling was used to identify additional candidate genes associated with CS hypertrophy. The top-ranked network included α-dystroglycan and like-acetylglucosaminyltransferase. Proteomics demonstrated increases in myotrophin and spectrin that could promote hypertrophy and cytoskeletal stability, respectively. Our results suggest that multiple pathways, including decreased myostatin and up-regulated miRNAs, α-dystroglycan/like-acetylglucosaminyltransferase, spectrin, and myotrophin, contribute to hypertrophy and functional sparing of the CS. These data also underscore the muscle-specific responses to dystrophin deficiency and the potential deleterious effects of differential muscle involvement.Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the dystrophin gene and occurs in approximately 1 in 3500 live male births.1 DMD boys show signs of skeletal muscle weakness, evidenced by a delay in walking until approximately 18 months and loss of ambulation by the teenage years. Necrotic muscle ultimately fails to regenerate and is replaced with fibrous connective tissue and fat. Molecular and cellular mechanisms underlying gradual muscle deterioration are poorly understood.Animal models of DMD include the mdx mouse and golden retriever muscular dystrophy (GRMD) dog.2,3 Despite sharing the same fundamental genetic and biochemical lesions, remarkable phenotypic variation occurs among dystrophin-deficient individuals and muscles. Mdx mice have a relatively mild phenotype,4 whereas affected dogs have clinical and pathological features consistent with those of DMD.5 Even among DMD patients, who all lack dystrophin except for rare revertant fibers, symptoms can vary markedly.6 Dogs with GRMD also demonstrate pronounced phenotypic variation, as some dogs lose the ability to walk within the first 6 months of life, whereas others remain ambulatory to 10 years of age or older.7–9In GRMD neonatal dogs, flexor muscles such as the sartorius are generally more severely involved than extensors, potentially due to their role in crawling.10,11 Early dystrophic histopathological changes seen in these diseased muscles include myofiber necrosis evidenced by hyaline fibers, mineralization, edema, and inflammation, with associated regeneration.10 Presumably, as dogs subsequently begin to walk, weight-bearing extensor muscles such as the vastus lateralis (VL) are more predisposed to injury and display these same acute dystrophic changes. With regard to individual muscle variation in DMD, extensors that undergo eccentric contraction (eg, quadriceps femoris) are particularly vulnerable to early weakness and wasting.12 On the other hand, the extraocular muscles are largely spared.13In DMD patients, most muscles atrophy over time, but some, such as the gastrocnemius, undergo gross enlargement.14 On the basis of early histological studies of dystrophic muscle biopsies, this calf hypertrophy was initially attributed to deposition of fat and fibrotic tissue and was termed pseudohypertrophy.15 However, in a series of 350 neuromuscular patients, including 9 with Becker muscular dystrophy, quantitative ultrasound demonstrated that calf hypertrophy was most often due to an actual increase in contractile tissue.16 Mdx mice17 and dystrophin-deficient cats18 also have muscle hypertrophy in the absence of significant fat and connective tissue infiltration. The sartorius muscle is particularly intriguing in both DMD and GRMD. Humans have a single muscle, whereas dogs have cranial and caudal bellies. Serving principally as a hip flexor, the sartorius extends from the pelvis to the proximal tibia in people. Both heads of the canine sartorius also arise from the pelvis, but they insert at different sites (caudal, proximal tibia; cranial, distal femur). The cranial sartorius (CS) muscle of neonatal GRMD dogs sustains extensive necrosis19 and then regenerates, often undergoing dramatic true hypertrophy.9,20 In DMD patients, the sartorius muscle is relatively spared and may hypertrophy late in the disease process.21,22Studies showing variable phenotypes among dystrophin-deficient species, individuals, and muscles suggest that factors other than dystrophin deficiency, so-called secondary effects, are involved in the disease process.23 Determining the molecular underpinnings of the variable clinical and histopathological response to dystrophin deficiency should provide insight into disease pathogenesis and an opportunity to identify potential targets for therapy. Phenotypic–molecular correlations are inherently limited in DMD patients due to unavoidable restrictions of muscle sampling. Animal studies are potentially more powerful because multiple muscles can be sampled at different ages, thus allowing clearer distinction of factors contributing to disease progression. We chose to use the GRMD model of DMD for this study because of the availability of archived biopsy samples of multiple muscles from affected dogs at two ages and corresponding systematic functional data that could be correlated with mRNA and protein expression findings.Hierarchical clustering of several phenotypic markers, including CS muscle size, tibiotarsal joint angle,7 and flexor and extensor torque,8 was first performed in a group of GRMD and normal dogs. Consistent with our prior studies,9 severely affected dogs tended to have larger CS muscles. To achieve a better understanding of the molecular signals that drive muscle hypertrophy, we extended a prior, largely pathological study of differential muscle involvement in the GRMD model.19 Proteins that are well known to influence muscle size [myostatin (MSTN)]24,25 or potentially compensate for dystrophin deficiency [utrophin (UTRN)]26 were assessed in a subset of the dogs evaluated by hierarchical clustering. MSTN showed an age-dependent decrease and an inverse correlation with the degree of CS hypertrophy. Regulators of MSTN at the protein (AKT1) and miRNA (miR-539 and miR-208b targeting myostatin mRNA) level were altered, consistent with down-regulation of MSTN signaling, CS hypertrophy, and functional rescue of this muscle. The growth factor myotrophin (MTPN) was increased in the CS. These studies were augmented by analysis of mRNA, miRNA, and proteomic profiles from several GRMD muscles at two different ages to elucidate additional hypertrophic pathways. Although UTRN was also uniformly increased in GRMD muscles, there was no association with CS size. Other membrane-associated proteins, including α-dystroglycan, like-acetylglucosaminyltransferase (LARGE), and β-spectrin, were increased in the GRMD CS, consistent with a role in membrane stabilization. These results indicate that several muscle proteins may act together to stabilize myofibers and promote muscle growth. Our findings also further substantiate that differential muscle involvement can exaggerate the GRMD phenotype. This suggests that care should be taken with treatments targeting specific pathways, such as MSTN, that could selectively exaggerate muscle hypertrophy.  相似文献   
13.
14.
15.
16.

Background

Long-term postdiscectomy degenerative disc disease and low back pain is a well-recognized disorder; however, its patient-centered characterization and quantification are lacking.

Questions/purposes

We performed a systematic literature review and prospective longitudinal study to determine the frequency of recurrent back pain after discectomy and quantify its effect on patient-reported outcomes (PROs).

Methods

A MEDLINE search was performed to identify studies reporting on the frequency of recurrent back pain, same-level recurrent disc herniation, and reoperation after primary lumbar discectomy. After excluding studies that did not report the percentage of patients with persistent back or leg pain more than 6 months after discectomy or did not report the rate of same level recurrent herniation, 90 studies, which in aggregate had evaluated 21,180 patients, were included in the systematic review portion of this study. For the longitudinal study, all patients undergoing primary lumbar discectomy between October 2010 and March 2013 were enrolled into our prospective spine registry. One hundred fifteen patients were more than 12 months out from surgery, 103 (90%) of whom were available for 1-year outcomes assessment. PROs were prospectively assessed at baseline, 3 months, 1 year, and 2 years. The threshold of deterioration used to classify recurrent back pain was the minimum clinically important difference in back pain (Numeric Rating Scale Back Pain [NRS-BP]) or Disability (Oswestry Disability Index [ODI]), which were 2.5 of 10 points and 20 of 100 points, respectively.

Results Systematic Review

The proportion of patients reporting short-term (6–24 months) and long-term (> 24 months) recurrent back pain ranged from 3% to 34% and 5% to 36%, respectively. The 2-year incidence of recurrent disc herniation ranged from 0% to 23% and the frequency of reoperation ranged from 0% to 13%.

Prospective Study

At 1-year and 2-year followup, 22% and 26% patients reported worsening of low back pain (NRS: 5.3 ± 2.5 versus 2.7 ± 2.8, p < 0.001) or disability (ODI%: 32 ± 18 versus 21 ± 18, p < 0.001) compared with 3 months.

Conclusions

In a systematic literature review and prospective outcomes study, the frequency of same-level disc herniation requiring reoperation was 6%. Two-year recurrent low back pain may occur in 15% to 25% of patients depending on the level of recurrent pain considered clinically important, and this leads to worse PROs at 1 and 2 years postoperatively.  相似文献   
17.
18.
19.
This pilot study evaluated the experience of people with co-occurring disorders (mental illness and addiction) in relation to peer-led and professional-led group interventions. The study used a qualitative (phenomenological) approach to evaluate the experience of a convenience sample of 6 individuals with co-occurring disorders who participated in up to 8 sessions each of both peer-led and professional-led group interventions (with a similar rate of attendance in both groups). The semi-structured interview data were coded and thematically analyzed. We found 5 themes within and across the 2 interventions. In both groups, participants experienced a positive environment and personal growth, and learned, albeit different things. They were more comfortable in the peer-led group and acquired more knowledge and skills in the professional-led group. Offering both peer-led and professional-led group interventions to people with co-occurring disorders may be better than offering either alone  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号