Clinical studies have provided ample evidence that high (either systemic or local) levels of vascular endothelial growth factor (VEGF) are associated with several pathophysiological disorders, including hemangiomas. To investigate whether elevated VEGF expression could directly affect these disorders, we created a transgenic (Tg) rabbit model with increased hepatic expression of the human VEGF(165) transgene under the control of the human alpha-antitrypsin promoter. Tg rabbits exhibited marked hepatomegaly, with livers 2.5-fold heavier than those of control rabbits. Histological analysis revealed that the livers of Tg rabbits showed prominent dilation of the sinusoids and formed various-sized blood vessel networks, a feature of diffuse hemangiomas. Immunohistochemical staining revealed that the hepatocytes produced VEGF(165), whereas plasma VEGF(165) was not detected. Furthermore, Tg rabbits suffered from hemolytic anemia, thrombocytopenia and splenomegaly, which was associated with marked extramedullary hematopoiesis. The manifestations of Tg rabbits mimic many of the features of hemangiomatous disorders in humans such as the Kasabach-Merritt syndrome, and therefore this model may be potentially useful for the study of the pathogenesis and complications of hemangiomas as well as the investigation of angiogenesis inhibitors. 相似文献
The biologically active substance P (SP) N-terminal metabolite SP1–7 has been reported to modulate several neural processes such as learning, locomotor activity and reaction to opioid withdrawal. Although all these processes are believed to be associated with dopaminergic transmission no evidence of an interaction between SP1–7 and dopamine in the case of morphine withdrawal has so far been reported. Therefore, in this work we applied in vivo microdialysis to investigate the effect of SP1–7 injection into the ventral tegmental area on dopamine release in nucleus accumbens of male rats during naloxone precipitated morphine withdrawal. The result showed that the heptapeptide enhances dopamine release and also elevates the level of the dopamine metabolite dihydroxyphenylacetic acid in this brain area. It was suggested that the observed action of the SP fragment on the dopamine system represents the underlying mechanism for a previously observed ability of SP1–7 to counteract the aversion response to morphine withdrawal. 相似文献
Background: Despite years of research, the treatment of acute kidney injury (AKI) remains a significant challenge. Animal studies presented causal links between elevated regulatory T cell (Treg) response and better prognosis in AKI. Previous studies in mice and humans showed that TIM-3+ Treg cells were more potent than TIM-3- Treg cells. In this study, we investigated the role of TIM-3 in Treg in AKI patients.
Methods: Peripheral blood from AKI patients and healthy controls were gathered, and TIM-3+ Treg subset was examined.
Results: Compared to healthy controls, the AKI patients presented a significant upregulation in the frequency of circulating CD4+CD25+ T cells; however, the majority of this increase was from the CD4+CD25+TIM-3- subset, and the frequency of CD4+CD25+TIM-3+ T cells was downregulated in AKI patients. In both healthy controls and AKI patients, the CD4+CD25+TIM-3+ T cells expressed higher levels of Foxp3, and were more potent at expressing LFA-1, LAG-3, CTLA-4, IL-10 and TGF-β. In addition, the CD4+CD25+TIM-3+ T cells from both healthy controls and AKI patients presented higher capacity to suppress CD4+CD25- T cell proliferation than the CD4+CD25+TIM-3- T cells. Interestingly, the total CD4+CD25+ T cells from AKI patients presented significantly lower inhibitory capacity than those from healthy controls, indicating that the low frequency of CD4+CD25+TIM-3+ T cells was restricting the efficacy of the Treg responses in AKI patients.
Conclusions: We demonstrated that TIM-3 downregulation impaired the function of Treg cells in AKI. The therapeutic potential of CD4+CD25+TIM-3+ T cells in AKI should be investigated in future studies. 相似文献
We have previously demonstrated that it is possible to induce a consistent and strong cytolytic T lymphocyte (CTL) response to synthetic peptides, corresponding to poorly immunogenic malaria CTL epitopes, by co-injecting them with peptides representing defined T helper (Th) epitopes in incomplete Freund's adjuvant (IFA). In this study we have tested different immunization protocols to improve further the elicitation of the CTL response. We show that the CTL response to a mixture of Th + CTL peptides administered in IFA was further enhanced by a previous injection of the Th epitope peptide in IFA. Moreover, we found that the response could be significantly augmented by a pre-injection of IFA alone. This enhancement was observed only if the Th epitope was also present in the second injection. The number of lymph node cells recovered was 2–3-fold higher in mice pre-injected with IFA, but the increase in specific CTL activity, expressed as lytic units per animal, by pre-injection of IFA was at least 10–20-fold. Thus, pre-injection of IFA clearly increases the magnitude of a subsequent CTL response. 相似文献
Numerous protein kinases have been implicated in visual cortex plasticity, but the role of serine/threonine protein phosphatases has not yet been established. Calcineurin, the only known Ca2+/calmodulin-activated protein phosphatase in the brain, has been identified as a molecular constraint on synaptic plasticity in the hippocampus and on memory. Using transgenic mice overexpressing calcineurin inducibly in forebrain neurons, we now provide evidence that calcineurin is also involved in ocular dominance plasticity. A transient increase in calcineurin activity is found to prevent the shift of responsiveness in the visual cortex following monocular deprivation, and this effect is reversible. These results imply that the balance between protein kinases and phosphatases is critical for visual cortex plasticity. 相似文献