首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6014篇
  免费   419篇
  国内免费   51篇
耳鼻咽喉   41篇
儿科学   132篇
妇产科学   135篇
基础医学   1100篇
口腔科学   99篇
临床医学   519篇
内科学   1550篇
皮肤病学   180篇
神经病学   598篇
特种医学   85篇
外科学   570篇
综合类   26篇
一般理论   3篇
预防医学   453篇
眼科学   82篇
药学   463篇
中国医学   21篇
肿瘤学   427篇
  2024年   10篇
  2023年   107篇
  2022年   272篇
  2021年   405篇
  2020年   192篇
  2019年   265篇
  2018年   286篇
  2017年   183篇
  2016年   224篇
  2015年   225篇
  2014年   307篇
  2013年   346篇
  2012年   492篇
  2011年   519篇
  2010年   271篇
  2009年   231篇
  2008年   362篇
  2007年   353篇
  2006年   311篇
  2005年   298篇
  2004年   236篇
  2003年   212篇
  2002年   197篇
  2001年   20篇
  2000年   8篇
  1999年   33篇
  1998年   28篇
  1997年   22篇
  1996年   13篇
  1995年   10篇
  1994年   2篇
  1993年   4篇
  1992年   7篇
  1991年   4篇
  1990年   5篇
  1988年   1篇
  1987年   4篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1974年   1篇
  1973年   3篇
  1969年   1篇
  1968年   1篇
  1963年   1篇
  1931年   1篇
  1928年   1篇
排序方式: 共有6484条查询结果,搜索用时 0 毫秒
91.
92.
An appropriate immune response against a specific pathogen requires finely orchestrated interactions between the various cell populations within the immune system. At the same time, immunological tolerance to self must be maintained. DCs play an essential role in achieving these dual requisites. They coordinate adaptive immunity by integrating signals directly emanating from both infectious agents and cells of the immune system. Many such signals, especially those from innate cells and T cells, have been extensively characterized. In contrast, little is known about how B cells modulate function of DCs. B cells produce a variety of cytokines, including IL‐10 and IL‐6, which are known to influence DC function. In addition, Igs constitute the major secretory products of terminally differentiated B cells (plasma cells). DCs express various types of receptors for binding Ig, such as Fc receptors and C‐type lectin receptors. In accordance, Igs can regulate DC function depending on the receptors engaged. Here, we review the emerging immunomodulatory role of cytokines and Ig secreted by B cells. We discuss the evidence for how these B‐cell‐derived factors may shape the adaptive immune response by directly acting on DCs.  相似文献   
93.
94.
95.
96.
97.
Phosphate load accelerates the progression of secondary hyperparathyroidism (sHPT). In advanced stages of sHPT, there is a marked hyperplasia and resistance to classical regulatory endocrine factors such as calcium, calcitriol, or fibroblast growth factor 23 (FGF23), which suppresses PTH secretion by an ERK-dependent mechanism. Nephrectomized rats were fed with a high- or normal-phosphorus diet for different periods of time to induce sHPT. Biochemical parameters, parathyroid gland microarrays, quantitative real-time PCR, and immunohistochemistry (ERK/phospho-ERK) were performed. To test the role of dual-specificity phosphatases (Dusp) on parathyroid gland regulation, normal parathyroid glands were cultured with FGF23 and Dusp. Uremic rats fed with a high-phosphorus diet showed more severe sHPT, higher serum FGF23 levels and mortality, and decreased parathyroid Klotho gene expression. In all stages of sHPT, parathyroid microarrays displayed a widespread gene expression down-regulation; only a few genes were overexpressed, among them, Dusp5 and -6. In very severe sHPT, a significant reduction in phospho-ERK (the target of Dusp) and a significant increase of Dusp5 and -6 gene expression were observed. In ex vivo experiments with parathyroid glands, Dusp partially blocked the effect of FGF23 on PTH secretion, suggesting that Dusp might play a role in parathyroid regulation. The overexpression of Dusp and the inactivation of ERK found in the in vivo studies together with the ex vivo results might be indicative of the defense mechanism triggered to counteract hyperplasia, a mechanism that can also contribute to the resistance to the effect of FGF23 on parathyroid gland observed in advanced forms of chronic kidney disease.  相似文献   
98.
Synucleins are a family of homologous proteins principally known for their involvement in neurodegeneration. γ-Synuclein is highly expressed in human white adipose tissue and increased in obesity. Here we show that γ-synuclein is nutritionally regulated in white adipose tissue whereas its loss partially protects mice from high-fat diet (HFD)–induced obesity and ameliorates some of the associated metabolic complications. Compared with HFD-fed WT mice, HFD-fed γ-synuclein–null mutant mice display increased lipolysis, lipid oxidation, and energy expenditure, and reduced adipocyte hypertrophy. Knockdown of γ-synuclein in adipocytes causes redistribution of the key lipolytic enzyme ATGL to lipid droplets and increases lipolysis. γ-Synuclein–deficient adipocytes also contain fewer SNARE complexes of a type involved in lipid droplet fusion. We hypothesize that γ-synuclein may deliver SNAP-23 to the SNARE complexes under lipogenic conditions. Via these independent but complementary roles, γ-synuclein may coordinately modulate lipid storage by influencing lipolysis and lipid droplet formation. Our data reveal γ-synuclein as a regulator of lipid handling in adipocytes, the function of which is particularly important in conditions of nutrient excess.Understanding the link between increased adiposity and the development of metabolic disease may reveal novel therapeutic targets to counter the rising pandemic of obesity. Inhibiting adipose tissue expansion alone is likely to worsen metabolic outcome, as evidenced by human syndromes of lipodystrophy, whereby inappropriately decreased adipose mass causes severe metabolic disorders (1). Indeed, adipose tissue dysfunction and/or exceeded adipose storage capacity may underlie ectopic lipid accumulation and lipotoxicity in obesity (2). Therefore, a major challenge is to identify pathways via which adiposity can be reduced without concomitant increases in circulating lipids and attendant metabolic disease. Achieving this goal requires a better understanding of the molecular mechanisms that regulate lipid metabolism and storage in adipocytes, particularly in times of energy surplus.γ-Synuclein belongs to the synuclein family of proteins, whose founder member α-synuclein is best known for its links with neurodegenerative diseases, most notably Parkinson disease (3). To date, no clear cellular role is attributed to γ-synuclein, and ablation of γ-synuclein causes only minor changes in the nervous system (47). Recently, we and others have reported high levels of γ-synuclein expression in adipose tissue of humans and other mammals (8, 9). Moreover, expression of γ-synuclein is increased in the adipose tissue of obese humans and decreased during caloric restriction (8).Here we demonstrate that γ-synuclein–null mice display significantly reduced adiposity and fewer metabolic derangements compared with WT mice following high-fat feeding. This appears to result from increased adipocyte lipolysis coupled to enhanced whole-body lipid oxidation and energy expenditure. At a molecular level, we identify dual roles for γ-synuclein independently regulating lipid droplet fusion and adipocyte lipolysis to coordinately regulate triglyceride (TG) storage in adipocytes. Together, our observations reveal that γ-synuclein is a regulator of lipid metabolism and, hence, a potential therapeutic target for treatment of obesity and associated metabolic diseases.  相似文献   
99.
100.
Enamel defects in the permanent teeth of patients with coeliac disease (CD) are often reported as an atypical manifestation, sometimes being suggestive of an undiagnosed atypical disease. We proposed to explore the pathogenesis of these oral defects, which are poorly studied. Sequence analyses of proteins from gluten (gliadins) and of proline-rich enamel proteins (amelogenin and ameloblastin) suggested the presence of common antigenic motifs. Therefore, we analyzed, by ELISA and western blotting, the reactivity of sera from patients with CD against gliadin and enamel-derived peptides. Correlation analyses between the levels of specific antibodies against gliadin and enamel derived peptides and inhibition experiments confirmed the presence of cross-reactive antibodies. Immunoblot analysis revealed that the most prominent component in enamel matrix derivative (of approximately 18.6 kDa), identified by an amelogenin-specific antibody, is recognized by sera from patients with CD; in addition, several fractions of pure gliadin were recognized by amelogenin-specific antibody. In agreement, sera from mice immunized with enamel matrix-derived proteins generated antibodies that recognized a peptide (of approximately 21.2 kDa) derived from gliadin. In conclusion, antibodies against gliadin generated in patients with CD can react in vitro with a major enamel protein. The involvement of anti-gliadin serum in the pathogenesis of enamel defects in children with untreated CD can be hypothesized on the basis of these novel results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号