首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2375770篇
  免费   176920篇
  国内免费   3384篇
耳鼻咽喉   32356篇
儿科学   76762篇
妇产科学   63360篇
基础医学   353045篇
口腔科学   63944篇
临床医学   214088篇
内科学   463707篇
皮肤病学   52374篇
神经病学   188150篇
特种医学   88911篇
外国民族医学   513篇
外科学   357790篇
综合类   47516篇
现状与发展   12篇
一般理论   854篇
预防医学   184719篇
眼科学   54722篇
药学   177214篇
  9篇
中国医学   4639篇
肿瘤学   131389篇
  2021年   19504篇
  2019年   20081篇
  2018年   27974篇
  2017年   21025篇
  2016年   23374篇
  2015年   26430篇
  2014年   36957篇
  2013年   55277篇
  2012年   76963篇
  2011年   81694篇
  2010年   48199篇
  2009年   45483篇
  2008年   76691篇
  2007年   81578篇
  2006年   82252篇
  2005年   79830篇
  2004年   76378篇
  2003年   73509篇
  2002年   71167篇
  2001年   109375篇
  2000年   112141篇
  1999年   94061篇
  1998年   27175篇
  1997年   23804篇
  1996年   24188篇
  1995年   22837篇
  1994年   21007篇
  1993年   19819篇
  1992年   72340篇
  1991年   70379篇
  1990年   68715篇
  1989年   65962篇
  1988年   60577篇
  1987年   59407篇
  1986年   55447篇
  1985年   53219篇
  1984年   39496篇
  1983年   33530篇
  1982年   19944篇
  1979年   35970篇
  1978年   25725篇
  1977年   21300篇
  1976年   20403篇
  1975年   21877篇
  1974年   26239篇
  1973年   24879篇
  1972年   23283篇
  1971年   22129篇
  1970年   20328篇
  1969年   19410篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
103.
The present study aimed at measuring seropositivities for infection by Ascaris suum and Toxocara canis using the excretory/secretory (E/S) antigens from Ascaris suum (AES) and Toxocara canis (TES) within an indigenous population. In addition, quantification of cytokine expressions in peripheral blood cells was determined. A total of 50 Warao indigenous were included; of which 43 were adults and seven children. In adults, 44.1% were seropositive for both parasites; whereas children had only seropositivity to one or the other helminth. For ascariosis, the percentage of AES seropositivity in adults and children was high; 23.3% and 57.1%, respectively. While that for toxocariosis, the percentage of TES seropositivity in adults and children was low; 9.3% and 14.3%, respectively. The percentage of seronegativity was comparable for AES and TES antigens in adults (27.9%) and children (28.6%). When positive sera were analyzed by Western blotting technique using AES antigens; three bands of 97.2, 193.6 and 200.2 kDas were mostly recognized. When the TES antigens were used, nine major bands were mostly identified; 47.4, 52.2, 84.9, 98.2, 119.1, 131.3, 175.6, 184.4 and 193.6 kDas. Stool examinations showed that Blastocystis hominis, Hymenolepis nana and Entamoeba coli were the most commonly observed intestinal parasites. Quantification of cytokines IFN-γ, IL-2, IL-6, TGF-β, TNF-α, IL-10 and IL-4 expressions showed that there was only a significant increased expression of IL-4 in indigenous with TES seropositivity (p < 0.002). Ascaris and Toxocara seropositivity was prevalent among Warao indigenous.  相似文献   
104.
105.
A 42‐year‐old man presented with a viral prodrome and tested positive for influenza A. He rapidly deteriorated developing cardiogenic shock, rhabdomyolysis, and acute kidney injury. Patient improved 1 week later with supportive measures including vasopressors, inotropes, and an intraaortic balloon pump. We report this case as it highlights the discordance between echocardiographic ventricular wall thickening as a result of myocardial edema, and electrocardiographic findings at presentation, with a reversal in findings at time of resolution. Additionally, there was some suggestion of a regional pattern to the reduced longitudinal strain.  相似文献   
106.
107.
108.
109.
BACKGROUND AND PURPOSE:Accurate and reliable detection of white matter hyperintensities and their volume quantification can provide valuable clinical information to assess neurologic disease progression. In this work, a stacked generalization ensemble of orthogonal 3D convolutional neural networks, StackGen-Net, is explored for improving automated detection of white matter hyperintensities in 3D T2-FLAIR images.MATERIALS AND METHODS:Individual convolutional neural networks in StackGen-Net were trained on 2.5D patches from orthogonal reformatting of 3D-FLAIR (n = 21) to yield white matter hyperintensity posteriors. A meta convolutional neural network was trained to learn the functional mapping from orthogonal white matter hyperintensity posteriors to the final white matter hyperintensity prediction. The impact of training data and architecture choices on white matter hyperintensity segmentation performance was systematically evaluated on a test cohort (n = 9). The segmentation performance of StackGen-Net was compared with state-of-the-art convolutional neural network techniques on an independent test cohort from the Alzheimer’s Disease Neuroimaging Initiative-3 (n = 20).RESULTS:StackGen-Net outperformed individual convolutional neural networks in the ensemble and their combination using averaging or majority voting. In a comparison with state-of-the-art white matter hyperintensity segmentation techniques, StackGen-Net achieved a significantly higher Dice score (0.76 [SD, 0.08], F1-lesion (0.74 [SD, 0.13]), and area under precision-recall curve (0.84 [SD, 0.09]), and the lowest absolute volume difference (13.3% [SD, 9.1%]). StackGen-Net performance in Dice scores (median = 0.74) did not significantly differ (P = .22) from interobserver (median = 0.73) variability between 2 experienced neuroradiologists. We found no significant difference (P = .15) in white matter hyperintensity lesion volumes from StackGen-Net predictions and ground truth annotations.CONCLUSIONS:A stacked generalization of convolutional neural networks, utilizing multiplanar lesion information using 2.5D spatial context, greatly improved the segmentation performance of StackGen-Net compared with traditional ensemble techniques and some state-of-the-art deep learning models for 3D-FLAIR.

White matter hyperintensities (WMHs) correspond to pathologic features of axonal degeneration, demyelination, and gliosis observed within cerebral white matter.1 Clinically, the extent of WMHs in the brain has been associated with cognitive impairment, Alzheimer’s disease and vascular dementia, and increased risk of stroke.2,3 The detection and quantification of WMH volumes to monitor lesion burden evolution and its correlation with clinical outcomes have been of interest in clinical research.4,5 Although the extent of WMHs can be visually scored,6 the categoric nature of such scoring systems makes quantitative evaluation of disease progression difficult. Manually segmenting WMHs is tedious, prone to inter- and intraobserver variability, and is, in most cases, impractical. Thus, there is an increased interest in developing fast, accurate, and reliable computer-aided automated techniques for WMH segmentation.Convolutional neural network (CNN)-based approaches have been successful in several semantic segmentation tasks in medical imaging.7 Recent works have proposed using deep learning–based methods for segmenting WMHs using 2D-FLAIR images.8-11 More recently, a WMH segmentation challenge12 was also organized (http://wmh.isi.uu.nl/) to facilitate comparison of automated segmentation of WMHs of presumed vascular origin in 2D multislice T2-FLAIR images. Architectures that used an ensemble of separately trained CNNs showed promising results in this challenge, with 3 of the top 5 winners using ensemble-based techniques.12Conventional 2D-FLAIR images are typically acquired with thick slices (3–4 mm) and possible slice gaps. Partial volume effects from a thick slice are likely to affect the detection of smaller lesions, both in-plane and out-of-plane. 3D-FLAIR images, with isotropic resolution, have been shown to achieve higher resolution and contrast-to-noise ratio13 and have shown promising results in MS lesion detection using 3D CNNs.14 Additionally, the isotropic resolution enables viewing and evaluation of the images in multiple planes. This multiplanar reformatting of 3D-FLAIR without the use of interpolating kernels is only possible due to the isotropic nature of the acquisition. Network architectures that use information from the 3 orthogonal views have been explored in recent works for CNN-based segmentation of 3D MR imaging data.15 The use of data from multiple planes allows more spatial context during training without the computational burden associated with full 3D training.16 The use of 3 orthogonal views simultaneously mirrors how humans approach this segmentation task.Ensembles of CNNs have been shown to average away the variances in the solution and the choice of model- and configuration-specific behaviors of CNNs.17 Traditionally, the solutions from these separately trained CNNs are combined by averaging or using a majority consensus. In this work, we propose the use of a stacked generalization framework (StackGen-Net) for combining multiplanar lesion information from 3D CNN ensembles to improve the detection of WMH lesions in 3D-FLAIR. A stacked generalization18 framework learns to combine solutions from individual CNNs in the ensemble. We systematically evaluated the performance of this framework and compared it with traditional ensemble techniques, such as averaging or majority voting, and state-of-the-art deep learning techniques.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号