首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   607746篇
  免费   77125篇
  国内免费   733篇
耳鼻咽喉   8640篇
儿科学   21526篇
妇产科学   14597篇
基础医学   102672篇
口腔科学   19920篇
临床医学   58062篇
内科学   121166篇
皮肤病学   19583篇
神经病学   50750篇
特种医学   21105篇
外国民族医学   63篇
外科学   94277篇
综合类   8675篇
一般理论   151篇
预防医学   44586篇
眼科学   13951篇
药学   47192篇
  1篇
中国医学   2072篇
肿瘤学   36615篇
  2021年   5073篇
  2020年   7172篇
  2019年   14369篇
  2018年   15176篇
  2017年   14825篇
  2016年   15974篇
  2015年   16356篇
  2014年   18143篇
  2013年   22284篇
  2012年   18672篇
  2011年   20039篇
  2010年   17755篇
  2009年   13727篇
  2008年   17145篇
  2007年   17197篇
  2006年   17317篇
  2005年   16388篇
  2004年   15899篇
  2003年   15097篇
  2002年   14990篇
  2001年   25142篇
  2000年   26070篇
  1999年   21195篇
  1998年   5706篇
  1997年   4914篇
  1996年   5242篇
  1995年   4829篇
  1992年   15999篇
  1991年   16554篇
  1990年   16625篇
  1989年   15997篇
  1988年   14729篇
  1987年   14579篇
  1986年   13760篇
  1985年   13090篇
  1984年   9738篇
  1983年   8336篇
  1979年   9502篇
  1978年   6926篇
  1977年   5841篇
  1976年   5656篇
  1975年   6443篇
  1974年   7687篇
  1973年   7187篇
  1972年   6996篇
  1971年   6714篇
  1970年   6208篇
  1969年   5914篇
  1968年   5577篇
  1967年   5032篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
61.
A classic pilomatricoma, which usually presents with an asymptomatic, solitary, firm, subcutaneous nodule in the head, neck, or extremities of the paediatric population, is easily diagnosed based on its characteristic clinical and histopathological features. However, its variants often pose particular diagnostic challenges to clinicians due to their rarity and diverse clinicopathological features. We present a new pseudocystic variant, manifesting as solid lesions floating in a fluid‐filled sac.  相似文献   
62.
BACKGROUND AND PURPOSE:Accurate and reliable detection of white matter hyperintensities and their volume quantification can provide valuable clinical information to assess neurologic disease progression. In this work, a stacked generalization ensemble of orthogonal 3D convolutional neural networks, StackGen-Net, is explored for improving automated detection of white matter hyperintensities in 3D T2-FLAIR images.MATERIALS AND METHODS:Individual convolutional neural networks in StackGen-Net were trained on 2.5D patches from orthogonal reformatting of 3D-FLAIR (n = 21) to yield white matter hyperintensity posteriors. A meta convolutional neural network was trained to learn the functional mapping from orthogonal white matter hyperintensity posteriors to the final white matter hyperintensity prediction. The impact of training data and architecture choices on white matter hyperintensity segmentation performance was systematically evaluated on a test cohort (n = 9). The segmentation performance of StackGen-Net was compared with state-of-the-art convolutional neural network techniques on an independent test cohort from the Alzheimer’s Disease Neuroimaging Initiative-3 (n = 20).RESULTS:StackGen-Net outperformed individual convolutional neural networks in the ensemble and their combination using averaging or majority voting. In a comparison with state-of-the-art white matter hyperintensity segmentation techniques, StackGen-Net achieved a significantly higher Dice score (0.76 [SD, 0.08], F1-lesion (0.74 [SD, 0.13]), and area under precision-recall curve (0.84 [SD, 0.09]), and the lowest absolute volume difference (13.3% [SD, 9.1%]). StackGen-Net performance in Dice scores (median = 0.74) did not significantly differ (P = .22) from interobserver (median = 0.73) variability between 2 experienced neuroradiologists. We found no significant difference (P = .15) in white matter hyperintensity lesion volumes from StackGen-Net predictions and ground truth annotations.CONCLUSIONS:A stacked generalization of convolutional neural networks, utilizing multiplanar lesion information using 2.5D spatial context, greatly improved the segmentation performance of StackGen-Net compared with traditional ensemble techniques and some state-of-the-art deep learning models for 3D-FLAIR.

White matter hyperintensities (WMHs) correspond to pathologic features of axonal degeneration, demyelination, and gliosis observed within cerebral white matter.1 Clinically, the extent of WMHs in the brain has been associated with cognitive impairment, Alzheimer’s disease and vascular dementia, and increased risk of stroke.2,3 The detection and quantification of WMH volumes to monitor lesion burden evolution and its correlation with clinical outcomes have been of interest in clinical research.4,5 Although the extent of WMHs can be visually scored,6 the categoric nature of such scoring systems makes quantitative evaluation of disease progression difficult. Manually segmenting WMHs is tedious, prone to inter- and intraobserver variability, and is, in most cases, impractical. Thus, there is an increased interest in developing fast, accurate, and reliable computer-aided automated techniques for WMH segmentation.Convolutional neural network (CNN)-based approaches have been successful in several semantic segmentation tasks in medical imaging.7 Recent works have proposed using deep learning–based methods for segmenting WMHs using 2D-FLAIR images.8-11 More recently, a WMH segmentation challenge12 was also organized (http://wmh.isi.uu.nl/) to facilitate comparison of automated segmentation of WMHs of presumed vascular origin in 2D multislice T2-FLAIR images. Architectures that used an ensemble of separately trained CNNs showed promising results in this challenge, with 3 of the top 5 winners using ensemble-based techniques.12Conventional 2D-FLAIR images are typically acquired with thick slices (3–4 mm) and possible slice gaps. Partial volume effects from a thick slice are likely to affect the detection of smaller lesions, both in-plane and out-of-plane. 3D-FLAIR images, with isotropic resolution, have been shown to achieve higher resolution and contrast-to-noise ratio13 and have shown promising results in MS lesion detection using 3D CNNs.14 Additionally, the isotropic resolution enables viewing and evaluation of the images in multiple planes. This multiplanar reformatting of 3D-FLAIR without the use of interpolating kernels is only possible due to the isotropic nature of the acquisition. Network architectures that use information from the 3 orthogonal views have been explored in recent works for CNN-based segmentation of 3D MR imaging data.15 The use of data from multiple planes allows more spatial context during training without the computational burden associated with full 3D training.16 The use of 3 orthogonal views simultaneously mirrors how humans approach this segmentation task.Ensembles of CNNs have been shown to average away the variances in the solution and the choice of model- and configuration-specific behaviors of CNNs.17 Traditionally, the solutions from these separately trained CNNs are combined by averaging or using a majority consensus. In this work, we propose the use of a stacked generalization framework (StackGen-Net) for combining multiplanar lesion information from 3D CNN ensembles to improve the detection of WMH lesions in 3D-FLAIR. A stacked generalization18 framework learns to combine solutions from individual CNNs in the ensemble. We systematically evaluated the performance of this framework and compared it with traditional ensemble techniques, such as averaging or majority voting, and state-of-the-art deep learning techniques.  相似文献   
63.
64.
Three‐dimensional (3D) printing technology, virtual reality, and augmented reality technology have been used to help surgeons to complete complex total hip arthroplasty, while their respective shortcomings limit their further application. With the development of technology, mixed reality (MR) technology has been applied to improve the success rate of complicated hip arthroplasty because of its unique advantages. We presented a case of a 59‐year‐old man with an intertrochanteric fracture in the left femur, who had received a prior left hip fusion. After admission to our hospital, a left total hip arthroplasty was performed on the patient using a combination of MR technology and 3D printing technology. Before surgery, 3D reconstruction of a certain bony landmark exposed in the surgical area was first performed. Then a veneer part was designed according to the bony landmark and connected to a reference registration landmark outside the body through a connecting rod. After that, the series of parts were made into a holistic reference registration instrument using 3D printing technology, and the patient's data for bone and surrounding tissue, along with digital 3D information of the reference registration instrument, were imported into the head‐mounted display (HMD). During the operation, the disinfected reference registration instrument was installed on the selected bony landmark, and then the automatic real‐time registration was realized by HMD through recognizing the registration landmark on the reference registration instrument, whereby the patient's virtual bone and other anatomical structures were quickly and accurately superimposed on the real body of the patient. To the best of our knowledge, this is the first report to use MR combined with 3D printing technology in total hip arthroplasty.  相似文献   
65.
66.
To evaluate the changes in alveolar contour after guided bone regeneration (GBR) with two different combinations of biomaterials in dehiscence defects arou  相似文献   
67.
68.
Gangliocytic paragangliomas are rare tumors that almost exclusively occur within the second portion of the duodenum. Although these tumors generally have a benign clinical course, they have the potential to recur or metastasize to regional lymph nodes. The case report presented here describes a 57-year-old female patient with melena, progressive asthenia, anemia, and a mass in the second-third portion of the duodenum that was treated by local excision. The patient was diagnosed with a friable bleeding tumor. The histologic analysis showed that the tumor was a 4 cm gangliocytic paraganglioma without a malignant cell pattern. In the absence of local invasion or distant metastasis, endoscopic resection represents a feasible, curative therapy. Although endoscopic polypectomy is currently considered the treatment of choice, it is not recommended if the size of the tumor is > 3 cm and/or there is active or recent bleeding. Patients diagnosed with a gangliocytic paraganglioma should be closely followed-up for possible local recurrence.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号