首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1603篇
  免费   139篇
  国内免费   1篇
耳鼻咽喉   19篇
儿科学   40篇
妇产科学   22篇
基础医学   218篇
口腔科学   32篇
临床医学   234篇
内科学   279篇
皮肤病学   18篇
神经病学   155篇
特种医学   19篇
外科学   115篇
综合类   24篇
一般理论   1篇
预防医学   222篇
眼科学   14篇
药学   109篇
中国医学   11篇
肿瘤学   211篇
  2024年   5篇
  2023年   37篇
  2022年   46篇
  2021年   90篇
  2020年   60篇
  2019年   71篇
  2018年   91篇
  2017年   51篇
  2016年   70篇
  2015年   63篇
  2014年   70篇
  2013年   76篇
  2012年   111篇
  2011年   113篇
  2010年   58篇
  2009年   55篇
  2008年   94篇
  2007年   95篇
  2006年   85篇
  2005年   83篇
  2004年   76篇
  2003年   70篇
  2002年   68篇
  2001年   2篇
  2000年   7篇
  1999年   9篇
  1998年   11篇
  1997年   7篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1986年   5篇
  1985年   4篇
  1984年   2篇
  1976年   2篇
  1973年   2篇
  1972年   6篇
  1970年   2篇
  1967年   4篇
  1964年   3篇
  1963年   2篇
  1962年   3篇
  1961年   1篇
  1960年   1篇
  1959年   1篇
  1958年   1篇
  1931年   1篇
  1929年   1篇
排序方式: 共有1743条查询结果,搜索用时 15 毫秒
21.
22.
23.
24.

Objectives

To assess the association between fatigue, cognition, domains of the EuroQol five-dimensional questionnaire (EQ-5D-3L), disability, and utilities estimated with several Western European value sets in patients with multiple sclerosis (MS).

Methods

Data from a multinational, cross-sectional, observational study of patients with MS (N = 16,808) conducted in 16 European countries were used. Health-related quality of life data were collected through the EQ-5D-3L, and fatigue and cognitive difficulties were self-assessed on a 10-point visual analogue scale. Associations were assessed using Pearson correlation and multivariate regression model.

Results

Symptoms of fatigue and cognitive difficulties were present in 90% and 70% of patients at all levels of disability, respectively, and thus only weakly correlated to disability. Problems in the EQ-5D-3L domains were common even at mild disability levels. Mobility, usual activities, and pain issues were experienced by 80% to 90% of patients with moderate and high levels of disability. Mobility, usual activities, and self-care were strongly correlated to disability. Disability, MS type, fatigue, and cognition were associated with utility in regression models, although the coefficients of fatigue and cognition were small.

Conclusions

The strong relationship of disability with utility was confirmed. Despite this, fatigue and cognitive difficulties were associated with utility estimated with different European value sets.  相似文献   
25.
26.
27.
We audited the practice of offering, and the uptake of, an HIV antibody test amongst genitourinary medicine clinic patients in the West Midlands region. There were wide variations in the offering (from 14 to 100%) and uptake (18 to 64%) of the test in the different clinics within the same region.  相似文献   
28.
Galectin-3 is a glycan-binding protein (GBP) that binds β-galactoside glycan structures to orchestrate a variety of important biological events, including the activation of hepatic stellate cells and regulation of immune responses. While the requisite glycan epitopes needed to bind galectin-3 have long been elucidated, the cellular glycoproteins that bear these glycan signatures remain unknown. Given the importance of the three-dimensional (3D) arrangement of glycans in dictating GBP interactions, strategies that allow the identification of GBP receptors in live cells, where the native glycan presentation and glycoprotein expression are preserved, have significant advantages over static and artificial systems. Here we describe the integration of a proximity labeling method and quantitative mass spectrometry to map the glycan and glycoprotein interactors for galectin-3 in live human hepatic stellate cells and peripheral blood mononuclear cells. Understanding the identity of the glycoproteins and defining the structures of the glycans will empower efforts to design and develop selective therapeutics to mitigate galectin-3–mediated biological events.

The noncovalent interactions between glycan-binding proteins (GBPs) and glycans dictate many important biological events. Among such GBPs is galectin-3, a 26-kDa β-galactoside GBP that plays key roles in many physiological and pathological events (1). In hepatic fibrosis, a disease that manifests as the excessive buildup of scar tissue, liver-resident macrophages secrete galectin-3 (2, 3), which then binds cell surface glycans on quiescent hepatic stellate cells (HSCs), activating them to transdifferentiate into a muscle-like phenotype. Galectin-3–null mice exhibit attenuated liver fibrosis even after induced injury, highlighting its critical role (3). Galectin-3 is also known to interact with cells of the innate immune system (4, 5) to regulate apoptosis (6) or control dendritic cell differentiation (7). In these cases, as well as in other cases in which galectin-3 is involved, the full complement of interacting glycoprotein receptors remains unknown.Despite significant advances in glycoscience, the study of GBP–glycan interactions and the identification of glycan-mediated counter-receptors remains a recurring challenge. Capturing these binding events often requires some form of artificial reconstitution to amplify individually weak interactions into high-avidity binding. Indeed, glycan microarrays with defined mixtures of homogenous glycans or recombinant GBPs have significantly propelled our understanding of glycan-mediated function (8). Conventional immunoprecipitation and lectin affinity techniques using cell lysates have similarly been used to reveal an initial catalog of 100 to 185 galectin-3–associated proteins (914). However, these manipulations alter the cell’s native and three-dimensional (3D) configuration and multivalent arrangement, both of which are critically important in the study of GBP–glycan interactions (15, 16).Another key issue involves the underlying glycoprotein ligand. Although many glycoproteins carry the glycan epitope for binding a GBP, only a limited set should be recognized as physiologically relevant receptors, owing to the physical constraints imposed by the living cell (17). While often overlooked, the glycoprotein carrying the glycan can impart specific biological functions to a GBP–glycan binding event (17). Recent work has put forth the concept of “professional glycoprotein ligands,” in which a specific set of glycoproteins (instead of a broadly defined glycome) can exhibit exquisite binding and functional roles (18). Thus, determining the identity of the underlying core protein that anchors the glycan can be greatly empowering. Not only can it provide an understanding of the 3D arrangement of the glycan (if the 3D structure of the core protein is known), but it can also provide additional insight into its expression levels in different cell types and tissues, further informing strategies for selective drug development.Thus, comprehensive approaches that permit the study of GBP–glycan interactions in live cells while simultaneously facilitating identification of the physiological glycoprotein receptors have great potential to impact glycoscience. We hypothesize that proximity labeling strategies (19) using an engineered ascorbate peroxidase, APEX2 (20), could be compatible for elucidating glycan-mediated GBP–glycoprotein interactions. In this approach (Fig. 1), APEX2 is fused to a protein of interest, followed by the treatment of cells with biotin-phenol and subsequently with hydrogen peroxide (H2O2). Under these conditions, APEX2 catalyzes the formation of highly reactive, short-lived (<1 ms), and proximally restricted (<20 nm) biotin-phenoxyl radicals that covalently tag nearby electron-rich residues. The biotinylated proteins can then be enriched and identified using quantitative mass spectrometry (MS)-based proteomics. Because the (glyco)proteins adjacent to the APEX2 fusion protein are preferentially biotinylated, the resulting MS data provide a readout of its immediate environment.Open in a separate windowFig. 1.Schematic illustration of the identification of galectin-3 (Gal-3) interacting proteins by in situ proximity labeling. Recombinant APEX2 and galectin-3 fusion proteins are applied to living cells where galectin-3 can freely diffuse to bind its cognate ligands. On addition of biotin phenol (yellow circle with “B”; 30 min) and hydrogen peroxide (H2O2; 1 min), APEX2 catalyzes the formation of highly-reactive biotin-phenoxyl radicals that react within a short range (<20 nm) of the galectin-3 complex within a short time frame (<1 ms). The biotin-tagged protein interactors can then be identified using MS-based proteomics.We reasoned that proximity labeling could offer significant advantages over other approaches to determining GBP–glycan interactions, including the opportunity to perform the labeling in live cells and the ability to tag weakly bound glycan-mediated interactors, as the covalent biotinylation reaction ensures that the enrichment step no longer relies on weak GBP–glycan interactions alone. When coupled with inhibitors, the proximity labeling strategy can also distinguish between glycan-mediated and non–glycan-mediated interactors. Integration of this approach with quantitative MS-based proteomics would also expedite the assignment of the interacting proteins and provide calculable measures to distinguish interactors from nonspecific binders.Here we report that the use of an APEX2 and galectin-3 fusion protein (PX-Gal3) provides a sensitive and comprehensive approach to mapping the proteome-wide glycan-mediated galectin-3 interactome in live human HSCs and peripheral blood mononuclear cells (PBMCs). We found that the exogenous incubation of cells with PX-Gal3 in HSCs leads to glycan-dependent interactions, whereas its cellular overexpression does not. We further validated the interactions between galectin-3 and candidate proteins in vitro and discovered that some proteins are direct glycan-mediated receptors. Using MS-based glycomics, we also examined the glycomes of HSC surfaces, PX-Gal3 tagged glycoproteins, and an individual glycoprotein receptor for galectin-3. Our results highlight the utility of the in situ proximity labeling approach in discovering physiologically relevant GBP interactors in living cells.  相似文献   
29.
Enfuvirtide (ENF) is the first in a new class of antiretroviral agents targeting the fusion process of the viral life cycle. ENF is a synthetic 36-amino acid peptide that binds to the HR-1 region of gp41 preventing fusion of viral and cellular membranes. With the introduction of ENF there are now four classes of antiretrovirals each with distinct and different resistance pathways. Resistance to ENF among subtype B HIV-1 isolates is associated with amino acid changes mainly in the HR-1 region, although other regions of envelope have also been implicated. To determine whether subtype C viruses developed resistance mutations similar to subtype B viruses, 11 subtype C and 4 subtype B viruses were passaged in the presence of increasing concentrations of ENF. The subtype C isolates showed varying levels of replication at 1 microg/ml ENF by day 18, but by day 29 all replicated efficiently at 10 microg/ml ENF. All subtype C isolates showed evidence of genotypic changes in gp41 HR-1 following exposure to ENF that included G36S/E/D, I37T, V38M/A/L/E, N/S42D, N43K, L45R/M, and A50T/V. Three subtype C viruses had compensatory changes in the HR-2 region, which corresponds to the ENF sequence, and two isolates had changes in the V3 region. Mutational patterns among the four subtype B viruses were similar to those for subtype C and those previously published in the literature. These data indicate that in vitro resistance to ENF develops rapidly among HIV-1 subtype C isolates. In general, mutational patterns for subtype C were similar to those described for subtype B, suggesting that the mechanism of action for ENF is similar for HIV-1 subtype B and C isolates.  相似文献   
30.

Background:

Major depressive disorder has been associated with abnormal resting-state functional connectivity (FC), especially in cognitive processing and emotional regulation networks. Although studies have found abnormal FC in regions of the default mode network (DMN), no study has investigated the FC of specific regions within the anterior DMN based on cytoarchitectonic subdivisions of the antero-medial pre-frontal cortex (PFC). Studies from different areas in the field have shown regions within the anterior DMN to be involved in emotional intelligence. Although abnormalities in this region have been observed in depression, the relationship between the ventromedial PFC (vmPFC) function and emotional intelligence has yet to be investigated in depressed individuals.

Methods:

Twenty-one medication-free, non–treatment resistant, depressed patients and 21 healthy controls underwent a resting state functional magnetic resonance imaging session. The participants also completed an ability-based measure of emotional intelligence: the Mayer-Salovey-Caruso Emotional Intelligence Test. FC maps of Brodmann areas (BA) 25, 10m, 10r, and 10p were created and compared between the two groups.

Results:

Mixed-effects analyses showed that the more anterior seeds encompassed larger areas of the DMN. Compared to healthy controls, depressed patients had significantly lower connectivity between BA10p and the right insula and between BA25 and the perigenual anterior cingulate cortex. Exploratory analyses showed an association between vmPFC connectivity and emotional intelligence.

Conclusions:

These results suggest that individuals with depression have reduced FC between antero-medial PFC regions and regions involved in emotional regulation compared to control subjects. Moreover, vmPFC functional connectivity appears linked to emotional intelligence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号