首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18130篇
  免费   1322篇
  国内免费   67篇
耳鼻咽喉   128篇
儿科学   566篇
妇产科学   539篇
基础医学   2553篇
口腔科学   304篇
临床医学   2058篇
内科学   3466篇
皮肤病学   480篇
神经病学   1823篇
特种医学   494篇
外科学   1898篇
综合类   116篇
一般理论   7篇
预防医学   1959篇
眼科学   423篇
药学   1073篇
  1篇
中国医学   19篇
肿瘤学   1612篇
  2024年   25篇
  2023年   237篇
  2022年   359篇
  2021年   690篇
  2020年   469篇
  2019年   584篇
  2018年   764篇
  2017年   509篇
  2016年   608篇
  2015年   675篇
  2014年   829篇
  2013年   1116篇
  2012年   1642篇
  2011年   1609篇
  2010年   820篇
  2009年   766篇
  2008年   1168篇
  2007年   1191篇
  2006年   1037篇
  2005年   958篇
  2004年   830篇
  2003年   760篇
  2002年   729篇
  2001年   97篇
  2000年   66篇
  1999年   85篇
  1998年   108篇
  1997年   103篇
  1996年   66篇
  1995年   53篇
  1994年   53篇
  1993年   58篇
  1992年   42篇
  1991年   29篇
  1990年   23篇
  1989年   23篇
  1988年   11篇
  1987年   13篇
  1986年   24篇
  1985年   20篇
  1984年   22篇
  1983年   18篇
  1982年   23篇
  1981年   14篇
  1980年   11篇
  1978年   12篇
  1977年   11篇
  1932年   15篇
  1931年   16篇
  1930年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
92.
93.
The Global Health Research Initiative (GHRI) involving the Canadian International Development Agency, the Canadian Institutes of Health Research, Health Canada and the International Development Research Centre seeks to coordinate Canada's research response to global health challenges. In light of numerous calls to action both nationally and internationally, an orientation to applied health policy and systems research, and to public health research and its application is required to redress global inequalities in wealth and health and to tackle well-documented constraints to achieving the United Nations Millennium Development Goals. Over the last four years, the GHRI has funded close to 70 research program development and pilot projects. However, longer-term investment is needed. The proposed dollars 100 million Teasdale-Corti Global Health Research Partnership Program is such a response, and is intended to support teams of researchers and research users to develop, test and implement innovative approaches to strengthening institutional capacity, especially in low- and middle-income countries; to generating knowledge and its effective application to improve the health of populations, especially those most vulnerable; and to strengthen health systems in those countries. While Canada stands poised to act, concerted leadership and resources are still required to support "research that matters" for health and development in low- and middle-income countries.  相似文献   
94.
Understanding the evaporation process of binary sessile droplets is essential for optimizing various technical processes, such as inkjet printing or heat transfer. Liquid mixtures whose evaporation and wetting properties may differ significantly from those of pure liquids are particularly interesting. Concentration gradients may occur in these binary droplets. The challenge is to measure concentration gradients without affecting the evaporation process. Here, spectroscopic methods with spatial resolution can discriminate between the components of a liquid mixture. We show that confocal Raman microscopy and spatially resolved NMR spectroscopy can be used as complementary methods to measure concentration gradients in evaporating 1-butanol/1-hexanol droplets on a hydrophobic surface. Deuterating one of the liquids allows analysis of the local composition through the comparison of the intensities of the C–H and C–D stretching bands in Raman spectra. Thus, a concentration gradient in the evaporating droplet was established. Spatially resolved NMR spectroscopy revealed the composition at different positions of a droplet evaporating in the NMR tube, an environment in which air exchange is less pronounced. While not being perfectly comparable, both methods—confocal Raman and spatially resolved NMR experiments—show the presence of a vertical concentration gradient as 1-butanol/1-hexanol droplets evaporate.

Evaporating droplets occur in various contexts such as inkjet printing (1, 2), heat transfer, or daily phenomena such as drying coffee stains (3, 4). In many applications, such as painting (5), cleaning, gluing, or printing (6), where liquid mixtures are used, the evaporation of a droplet is a complex process because the concentration profile within the droplet varies over time. To improve the controllability and predictability of the technical processes, it is essential to characterize the transport phenomena during the drying process. The measurement of the droplet composition is a crucial element and has to be carried out with sufficient spatial and temporal resolution. In particular, spectroscopic methods are promising tools for contactless concentration measurements of liquid mixtures.The evaporation of a droplet is governed by physical properties such as surface tension (7), density (810), vapor pressure (11), and boiling temperature. Additionally, concentration gradients can evolve in liquid mixtures (12). These gradients are driven by thermal gradients due to the enthalpy of evaporation (droplet cooling) or on heated surfaces, by surface tension gradients induced by preferential evaporation of one component or by density gradients for droplets composed of liquids with different densities like water and glycerol (13). The evaporation rates of the components can vary over the droplet surface. For sessile droplets with contact angles smaller than 90°, for example, the evaporation rates are higher at the three-phase contact line (14). These thermal or surface tension gradients can induce flow inside the droplet called Marangoni flow. This flow leads to concentration gradients across the droplet (710). The direction of the gradient depends on the density and surface tension. A direct application of this principle is, for instance, Marangoni cleaning in semiconductor technology (15).The investigation of the composition of sessile drops on the microliter scale, as they occur in inkjet printing or other technical processes, poses a challenge because the typical length scales of interest are smaller than the capillary length. In bulk samples, the composition can be examined in a straightforward manner with chromatographic methods such as gas chromatography and high-performance liquid chromatography or spectroscopic methods such as NMR spectroscopy, infrared spectroscopy, and Raman spectroscopy. However, for the investigation of sessile droplets, a high spatial and temporal resolution is required. For this purpose, confocal Raman spectroscopy and spatially resolved NMR spectroscopy are powerful tools. For both techniques, concentration determination is straightforward if at least two signals of the components of interest are baseline-separated. NMR is intrinsically calibration-free, whereas Raman spectroscopy requires calibration through reference experiments (1618). Both approaches allow the quantification of concentration gradients in sessile droplets, as is shown here.In Raman microscopy, good spatial resolution can be achieved in a confocal setup. The components of mixtures can be distinguished via specific vibrations for different functional groups or through a careful analysis of the Raman signals in the fingerprint region (<1,500 cm−1). For example, binary mixtures of ethanol and water can be characterized in a straightforward manner (17). If, however, both liquids have a similar chemical structure, the discrimination of the components might be hampered by signal overlap in the C–H stretching region (2,800 to 3,000 cm−1); e.g., in such cases, Raman signals in the fingerprint region (<1,500 cm−1) might be used for the identification of the species. However, these signals often provide a poor signal-to-noise ratio, which makes large integration times necessary. Thus, the image rate or resolution is so low that even slow diffusion processes are hardly resolved. Here, Raman stable isotope probing (SIP), which has been developed to monitor metabolic processes in microbiology, offers a solution (19). The basic idea of Raman SIP is to replace the proton in the C–H with deuterium in one of the mixture components such that the C–D stretching region occurs at roughly 1/2 times the C–H stretching and falls into a region with very weak or even without signals from the protonated liquid component. Thus, the concentration in a binary mixture can be calculated in a straightforward manner from the ratio of the integrated Raman intensities ICD/ICH of the respective stretching vibrations.Compared to Raman microscopy, where localization is achieved by scanning the focal point across the region of interest, in NMR experiments localization is achieved by using magnetic field gradients. Usually, one avoids phase boundaries (especially liquid–gas interfaces) in NMR experiments because they disturb the magnetic field homogeneity and reduce the spectral quality in terms of line shape and baseline separation of the resonances. Nevertheless, it has been shown that MRI can be used to characterize freezing water droplets (20), the infiltration of water into asphalts (21), and the evaporation of sessile droplets from porous surfaces (2224). Additionally, NMR can be used to quantify the composition of binary droplets during evaporation (25).Thus, the use of both complementary approaches to characterize evaporating binary droplets may be beneficial. In this article, we discuss the capabilities of Raman SIP and NMR techniques to analyze the evolution of the composition of an evaporating sessile binary droplet. As a model system, a binary mixture of 1-butanol and 1-hexanol was used. This mixture shows a low volatility such that the evaporation process can be captured with both Raman and NMR spectroscopies. With Raman spectroscopy, it was possible to observe concentration gradients of 1-butan-d9-ol over the height of the droplet during evaporation. NMR techniques were examined in terms of the capability to observe the evaporation of 1-butanol and yield time-dependent droplet composition with spatially resolved 1H-NMR spectra. Furthermore, the contours of the evaporating droplets were tracked by optical measurements to characterize the time-dependent changes in the droplet dimensions. Flows induced by the concentration gradients were confirmed by astigmatic particle tracking velocimetry.  相似文献   
95.
Collagen peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, also known as zooarchaeology by mass spectrometry (ZooMS), is a rapidly growing analytical technique in the fields of archaeology, ecology, and cultural heritage. Minimally destructive and cost effective, ZooMS enables rapid taxonomic identification of large bone assemblages, cultural heritage objects, and other organic materials of animal origin. As its importance grows as both a research and a conservation tool, it is critical to ensure that its expanding body of users understands its fundamental principles, strengths, and limitations. Here, we outline the basic functionality of ZooMS and provide guidance on interpreting collagen spectra from archaeological bones. We further examine the growing potential of applying ZooMS to nonmammalian assemblages, discuss available options for minimally and nondestructive analyses, and explore the potential for peptide mass fingerprinting to be expanded to noncollagenous proteins. We describe the current limitations of the method regarding accessibility, and we propose solutions for the future. Finally, we review the explosive growth of ZooMS over the past decade and highlight the remarkably diverse applications for which the technique is suited.  相似文献   
96.
97.
Marmosets display remarkable vocal motor abilities. Macaques do not. What is it about the marmoset brain that enables its skill in the vocal domain? We examined the cortical control of a laryngeal muscle that is essential for vocalization in both species. We found that, in both monkeys, multiple premotor areas in the frontal lobe along with the primary motor cortex (M1) are major sources of disynaptic drive to laryngeal motoneurons. Two of the premotor areas, ventral area 6 (area 6V) and the supplementary motor area (SMA), are a substantially larger source of descending output in marmosets. We propose that the enhanced vocal motor skills of marmosets are due, in part, to the expansion of descending output from these premotor areas.

Speech is a uniquely human form of communication which uses vocalization to express thoughts and feelings. Vocalization is built on the exquisitely coordinated control over respiration, phonation, and articulation. Historically, the enhanced vocal motor skills of humans have been attributed to alterations in the peripheral mechanisms for sound production (1, 2). However, recent studies of laryngeal biomechanics have ruled out this explanation (3). Instead, modifications in central neural circuits are the likely basis of the enhanced vocal abilities of humans (1). Here, we used a comparative approach to identify the adaptations in the cerebral cortex that provide a substrate for the enhanced vocal motor abilities of some monkeys.Our experiments compared the areas of the cerebral cortex that are involved in the control of a laryngeal muscle in macaques and marmosets. We selected these two monkey species because of the striking differences in their vocal behavior. Macaque vocalization is generally limited to spontaneous utterances of acoustically simple calls which relate the animal’s emotional and motivational state (4). In the laboratory setting, it is difficult for researchers to elicit macaque vocalizations and for the monkeys to suppress spontaneous calls (5, 6). In contrast, marmosets readily vocalize in the laboratory setting. These monkeys naturally exhibit vocal turn taking with multiple back-and-forth exchanges that entrain to each other just as in human conversation (710). Marmosets can modulate the amplitude (11), timing (9, 11), and pitch (12) of their calls to compensate not only for physical noise but also for physical distance between conspecifics. Overall, marmosets demonstrate vocal skills and experience-dependent vocal production not observed in macaques (1315).To identify areas of the cerebral cortex that are involved in vocalization, we used retrograde transneuronal transport of rabies virus from the cricothyroid muscle. We selected the cricothyroid because it is the laryngeal muscle that is most specifically related to vocal motor control. The cricothyroid is an intrinsic laryngeal muscle that when active increases tension on the vocal folds (4). This muscle is unique in controlling vocal pitch while contributing little to other laryngeal functions, such as swallowing and airway regulation (4).  相似文献   
98.
99.
BackgroundA previous European Headache Federation (EHF) guideline addressed the use of monoclonal antibodies targeting the calcitonin gene-related peptide (CGRP) pathway to prevent migraine. Since then, randomized controlled trials (RCTs) and real-world evidence have expanded the evidence and knowledge for those treatments. Therefore, the EHF panel decided to provide an updated guideline on the use of those treatments.MethodsThe guideline was developed following the Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) approach. The working group identified relevant questions, performed a systematic review and an analysis of the literature, assessed the quality of the available evidence, and wrote recommendations. Where the GRADE approach was not applicable, expert opinion was provided.ResultsWe found moderate to high quality of evidence to recommend eptinezumab, erenumab, fremanezumab, and galcanezumab in individuals with episodic and chronic migraine. For several important clinical questions, we found not enough evidence to provide evidence-based recommendations and guidance relied on experts’ opinion. Nevertheless, we provided updated suggestions regarding the long-term management of those treatments and their place with respect to the other migraine preventatives.ConclusionMonoclonal antibodies targeting the CGRP pathway are recommended for migraine prevention as they are effective and safe also in the long-term.Supplementary InformationThe online version contains supplementary material available at 10.1186/s10194-022-01431-x.  相似文献   
100.
Cancer burdens not only the patients themselves but also their personal environment. A few studies have already focused on the mental health and personal needs of caregivers of patients. The purpose of this retrospective analysis was to further assess the emotional burden and unmet needs for support of caregivers in a population of brain metastasis patients. In the time period 2013–2020, we identified 42 informal caregivers of their respective patients after palliative radiation treatment for brain metastases. The caregivers completed two standardized questionnaires about different treatment aspects, their emotional burden, and unmet needs for support. Involvement of psycho-oncology and palliative care was examined in a chart review. The majority of the caregivers (71.4%, n = 30) suffered from high emotional burden during cancer treatment of their relatives and showed unmet needs for emotional and psychosocial support, mostly referring to information needs and the involvement in the patient’s treatment decisions. Other unmet needs referred to handling personal needs and fears of dealing with the sick cancer patient in terms of practical care tasks and appropriate communication. Palliative care was involved in 30 cases and psycho-oncology in 12 cases. There is a high need for emotional and psychosocial support in informal caregivers of cancer patients. There might still be room for an improvement of psychosocial and psycho-oncological support. Care planning should cater to the emotional burden and unmet needs of informal caregivers as well. Further prospective studies in larger samples should be performed in order to confirm this analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号