首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1898篇
  免费   105篇
  国内免费   37篇
耳鼻咽喉   12篇
儿科学   57篇
妇产科学   38篇
基础医学   265篇
口腔科学   27篇
临床医学   248篇
内科学   299篇
皮肤病学   20篇
神经病学   113篇
特种医学   135篇
外科学   235篇
综合类   25篇
一般理论   1篇
预防医学   124篇
眼科学   75篇
药学   170篇
中国医学   9篇
肿瘤学   187篇
  2023年   18篇
  2022年   34篇
  2021年   81篇
  2020年   42篇
  2019年   49篇
  2018年   63篇
  2017年   49篇
  2016年   45篇
  2015年   48篇
  2014年   72篇
  2013年   108篇
  2012年   124篇
  2011年   118篇
  2010年   74篇
  2009年   72篇
  2008年   82篇
  2007年   120篇
  2006年   92篇
  2005年   89篇
  2004年   76篇
  2003年   70篇
  2002年   55篇
  2001年   56篇
  2000年   40篇
  1999年   48篇
  1998年   25篇
  1997年   29篇
  1996年   20篇
  1995年   20篇
  1994年   16篇
  1993年   7篇
  1992年   29篇
  1991年   19篇
  1990年   18篇
  1989年   19篇
  1988年   26篇
  1987年   13篇
  1986年   15篇
  1985年   6篇
  1984年   8篇
  1983年   11篇
  1982年   9篇
  1981年   3篇
  1980年   5篇
  1979年   2篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1968年   2篇
排序方式: 共有2040条查询结果,搜索用时 390 毫秒
91.
We report the isolation of 10 differentially expressed cDNAs in the process of apoptosis induced by the p53 tamor suppressor. As a global analytical method, we performed a differential display of mRNA between mouse M1 myeloid leukemia cells and derived clone LTR6 cells, which contain a stably transfected temperature-sensitive mutant of p53. At 32 degrees C wild-type p53 function is activated in LTR6 cells, resulting in programmed cell death. Eight genes are activated (TSAP; tumor suppressor activated pathway), and two are inhibited (TSIP, tumor suppressor inhibited pathway) in their expression. None of the 10 sequences has hitherto been recognized as part of the p53 signaling pathway. Three TSAPs are homologous to known genes. TSAP1 corresponds to phospholipase C beta 4. TSAP2 has a conserved domain homologous to a multiple endocrine neoplasia I (ZFM1) candidate gene. TSAP3 is the mouse homologue of the Drosophila seven in absentia gene. These data provide novel molecules involved in the pathway of wild-type p53 activation. They establish a functional link between a homologue of a conserved developmental Drosophila gene and signal transduction in tumor suppression leading to programmed cell death.  相似文献   
92.
Resistance to artemisinin derivatives, the most potent antimalarial drugs currently used, has emerged in Southeast Asia and threatens to spread to Africa. We report a case of malaria in a man who returned to Vietnam after 3 years in Angola that did not respond to intravenous artesunate and clindamycin or an oral artemisinin-based combination.  相似文献   
93.
94.
95.
96.
97.
In this work, we report the facile hydrothermal synthesis of manganese cobaltite nanoparticles (MnCo2O4.5 NPs) which can efficiently activate peroxymonosulfate (PMS) for the generation of sulfate free radicals (SO4˙) and degradation of organic dyes. The synthesized MnCo2O4.5 NPs have a polyhedral morphology with cubic spinel structure, homogeneously distributed Mn, Co, and O elements, and an average size less than 50 nm. As demonstrated, MnCo2O4.5 NPs showed the highest catalytic activity among all tested catalysts (MnO2, CoO) and outperformed other spinel-based catalysts for Methylene Blue (MB) degradation. The MB degradation efficiency reached 100% after 25 min of reaction under initial conditions of 500 mg L−1 Oxone, 20 mg L−1 MnCo2O4.5, 20 mg L−1 MB, unadjusted pH, and T = 25 °C. MnCo2O4.5 NPs showed a great catalytic activity in a wide pH range (3.5–11), catalyst dose (10–60 mg L−1), Oxone concentration (300–1500 mg L−1), MB concentration (5–40 mg L−1), and temperature (25–55 °C). HCO3, CO32− and particularly Cl coexisting anions were found to inhibit the catalytic activity of MnCo2O4.5 NPs. Radical quenching experiments revealed that sulfate radicals are primarily responsible for MB degradation. A reaction sequence for the catalytic activation of PMS was proposed. The as-prepared MnCo2O4.5 NPs could be reused for at least three consecutive cycles with small deterioration in their performance due to low metal leaching. This study suggests a facile route for synthesizing MnCo2O4.5 NPs with high catalytic activity for PMS activation and efficient degradation of organic dyes.

Catalytic degradation of organic dyes via manganese cobaltite nanoparticles-activated peroxymonosulfate.  相似文献   
98.
The Vietnamese Mekong Delta is predicted to be one of the regions most impacted by climate change, causing increased temperature and salinity in inland waters. We hypothesized that the increase in temperature and salinity may impact the microcystin (MC) production of two Microcystis strains isolated in this region from a freshwater pond (strain MBC) and a brackish water pond (strain MTV). The Microcystis strains were grown at low (27 °C), medium (31 °C), high (35 °C) and extremely high (37 °C) temperature in flat photobioreactors (Algaemist). At each temperature, when cultures reached a stable state, sea salt was added to increase salinity to 4‰, 8‰, 12‰ and 16‰. MC concentrations and cell quota were reduced at high and extremely high temperatures. Salinity, in general, had comparable effects on MC concentrations and quota. At a salinity of 4‰ and 8‰, concentrations of MC per mL of culture and MC cell quota (based on chlorophyll, dry-weight and particle counts) were higher than at 0.5‰, while at the highest salinities (12‰ and 16‰) these were strongly reduced. Strain MBC produced five MC variants of which MC-RR and MC-LR were most abundant, followed by MC-YR and relatively low amounts of demethylated variants dmMC-RR and dmMC-LR. In strain MTV, MC-RR was most abundant, with traces of MC-YR and dmMC-RR only in cultures grown at 16‰ salinity. Overall, higher temperature led to lower MC concentrations and cell quota, low salinity seemed to promote MC production and high salinity reduced MC production. Hence, increased temperature and higher salinity could lead to less toxic Microcystis, but since these conditions might favour Microcystis over other competitors, the overall biomass gain could offset a lower toxicity.  相似文献   
99.
Herein, the effect of nanostructured silicon and gold nanoparticles (AuNPs) on the power conversion efficiency (PCE) of an n-type silicon/poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (n-Si/PEDOT:PSS) hybrid solar cell was investigated. The Si surface modified with different nanostructures including Si nanopyramids (SiNPs), Si nanoholes (SiNHs) and Si nanowires (SiNWs) was utilized to improve light trapping and photo-carrier collection. The highest power conversion efficiency (PCE) of 8.15% was obtained with the hybrid solar cell employing SiNWs, which is about 8%, 20% and 40% higher compared to the devices using SiNHs, SiNPs and planar Si, respectively. The enhancement is attributed to the low reflectance of the SiNW structures and large PEDOT:PSS/Si interfacial area. In addition, the influence of AuNPs on the hybrid solar cell''s performance was examined. The PCE of the SiNW/PEDOT:PSS hybrid solar cell with 0.5 wt% AuNP is 8.89%, which is ca. 9% higher than that of the device without AuNPs (8.15%). This is attributed to the increase in the electrical conductivity and localized surface plasmon resonance of the AuNP-incorporated PEDOT:PSS coating layer.

n-Si/PEDOT:PSS hybrid solar cells using nanostructured silicon and AuNPs were prepared and investigated.  相似文献   
100.
Modern society has been facing serious health-related problems including food safety, diseases and illness. Hence, it is urgent to develop analysis methods for the detection and control of food contaminants, disease biomarkers and pathogens. As the traditional instrumental methods have several disadvantages, including being time consuming, and having high cost and laborious procedures, optical nanosensors have emerged as promising alternative or complementary approaches to those traditional ones. With the advantages of simple preparation, high surface-to-volume ratio, excellent biocompatibility, and especially, unique optical properties, gold nanoparticles (AuNPs) have been demonstrated as excellent transducers for optical sensing systems. Herein, we provide an overview of the synthesis of AuNPs and their excellent optical properties that are ideal for the development of optical nanosensors based on local surface plasmon resonance (LSPR), colorimetry, fluorescence resonance energy transfer (FRET), and surface-enhanced Raman scattering (SERS) phenomena. We also review the sensing strategies and their mechanisms, as well as summarizing the recent advances in the monitoring of food contaminants, disease biomarkers and pathogens using developed AuNP-based optical nanosensors in the past seven years (2015–now). Furthermore, trends and challenges in the application of these nanosensors in the determination of those analytes are discussed to suggest possible directions for future developments.

We provide an overview of the synthesis of AuNPs and their excellent optical properties for the development of optical nanosensors including colorimetric, fluorescence resonance energy transfer, and surface-enhanced Raman scattering sensors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号