Although iron, vltamm B12, and folate deficiency have been well documented after gastric bypass operations performed for morbid obesity, there is surprisingly
little information on either the natural course or the treatment of these deficiencies in Roux-en-Y gastric bypass (RYGB)
patients Durmg a l0-year period, a complete blood count and serum levels of iron, total iron-binding capacity, vltamin B12, and folate were obtained in 348 patients preoperatively and postoperatively at 6-month intervals for the first 2 years,
then annually thereafter The principal objectives of this study were to determine how readily patients who developed metabolic
deficiencies after Roux-en-Y gastric bypass responded to postoperative supplements of the deficient micronutrient and to learn
whether the risk of developmg these deficiencies decreases over time Hemoglobin and hematocrit levels were slgnificantly decreased
at all postoperative intervals in comparison to preoperative values Moreover, at each successive interval through 5 years,
hemoglobin and hematocrit were decreased signifiantly compared to the preceding interval Folate levels were significantly
increased compared to preoperative levels at all time intervals Iron and vltamin B12 levels were lower than preoperative measurements and remained relatively stable postoperatively Half of the low hemoglobin
levels were not associated with iron deficiency Taking multivltamin supplements resulted in a lower incidence of folate deficiency
but did not prevent iron or vitamin B12 deficiency Oral supplementation of iron and vitamin B12 corrected defiaencies in 43% and 81% of cases, respectively Folate deficiency was almost always corrected with multivitamins
alone No patient had symptoms that could be attributed to either vitamin B12 or folate deficiency Conversely, many patients had symptoms of iron deficiency and anenua Lack of symptoms of vitamin B12 and folate deficiency suggests that these deficiencies are not clinically important after RYGB Conversely, iron deficiency
and anemia are potentially serious problems after RYGB, particularly in younger women Hence we recommend prophylactic oral
iron supplements to premenopausal women who undergo RYGB 相似文献
AIM: To determine the preferred mode of travel to the operating theatre for elective orthopaedic patients.METHODS: Data was collected prospectively over a 2-wk period at an elective Orthopaedic Treatment Centre. Patients were asked to complete a patient satisfaction questionnaire following their surgery on their experience and subsequent preferred mode of transport to theatre. The data was then recorded in a tabulated format and analysed with percentages. Fisher’s exact test was used to determine if there was any statistical association between patients’ preference to walk and various groups; in-patient or day case procedures, and whether patients were < 60 years or > 60 years of age.RESULTS: Seventy patients (40 females and 30 males) fully completed the questionnaire. In total there were 33 d-cases and 37 in-patients. The spectrum of orthopaedic sub-specialties included was knee (41%), hip (17%), foot and ankle (24%), spine (13%) and upper limb (4%). Patient satisfaction for overall experience of travelling to theatre was either excellent (77%) or good (23%). Following their experience of travelling to theatre, 87% (95%CI: 79%-95%) of the total cohort would have preferred to walk to the operating theatre. There was a statistically significant association (P = 0.003) between patients’ preference to walk and whether they were day-case or in-patients. Similarly, there was a statistically significance association (P = 0.028) between patients’ preference to walk and whether they were < 60 years or > 60 years of age.CONCLUSION: This study confirms the majority of Orthopaedic elective patients would prefer to walk to theatre, when given the choice and if practically possible. 相似文献
A growing body of evidence has demonstrated the prognostic significance of sarcopenia in surgical patients as an independent predictor of postoperative complications and outcomes. These included an increased risk of total complications, major complications, re-admissions, infections, severe infections, 30 d mortality, longer hospital stay and increased hospitalization expenditures. A program to enhance recovery after surgery was meant to address these complications; however, compliance to the program since its introduction has been less than ideal. Over the last decade, the concept of prehabilitation, or “pre-surgery rehabilitation”, has been discussed. The presurgical period represents a window of opportunity to boost and optimize the health of an individual, providing a compensatory “buffer” for the imminent reduction in physiological reserve post-surgery. Initial results have been promising. We review the literature to critically review the utility of prehabilitation, not just in the clinical realm, but also in the scientific realm, with a resource management point-of-view. 相似文献
BACKGROUND: The southeastern United States is a region in which rates of cardiovascular and renal diseases are excessive. Within the Southeast, South Carolina has unusually high rates of end-stage renal disease (ESRD) in young people, with more than 70% of cases attributed to hypertension and diabetes. OBJECTIVE: To determine whether the increased vulnerability to early-onset ESRD might originate through impaired renal development in utero as measured by low birth weight. METHODS: Patients who were diagnosed with renal failure and undergoing dialysis from 1991 through 1996 were identified from the ESRD registry maintained by the Southeastern Kidney Council, Raleigh, NC. Birth weights reported on birth certificates were selected for the ESRD cases and non-ESRD controls who were born in South Carolina in 1950 and later. Birth weights were compared for 1230 cases and 2460 controls who were matched for age, sex, and race. RESULTS: Low birth weight was associated with ESRD among men and women as well as blacks and whites. Among people whose birth weight was less than 2.5 kg, the odds ratio for ESRD was 1.4 (95% confidence interval, 1.1-1.8) compared with people who weighed 3 to 3.5 kg. This association was present for renal failure resulting from diabetes, hypertension, and other causes. CONCLUSIONS: Low birth weights, which reflect adverse effects on development in utero, contribute to the early onset of ESRD in South Carolina. Since low birth weight increases the risk of ESRD from multiple causes, the data suggest that an adverse environment in utero impairs kidney development and makes it more vulnerable to damage from a range of pathological processes. 相似文献
Paroxysmal kinesigenic dyskinesia is an episodic movement disorder caused by dominant mutations in the proline-rich transmembrane protein PRRT2, with onset in childhood and typically with improvement or resolution by middle age. Mutations in the same gene may also cause benign infantile seizures, which begin in the first year of life and typically remit by the age of 2 years. Many details of PRRT2 function at the synapse, and the effects of mutations on neuronal excitability in the pathophysiology of epilepsy and dyskinesia, have emerged through the work of several groups over the last decade. However, the age dependence of the phenotypes has not been explored in detail in transgenic models. Here, we report our findings in heterozygous and homozygous Prrt2 knockout mice that recapitulate the age dependence of dyskinesia seen in the human disease. We show that Prrt2 deletion reduces the levels of synaptic proteins in a dose-dependent manner that is most pronounced at postnatal day 5 (P5), attenuates at P60, and disappears by P180. In a test for foot slippage while crossing a balance beam, transient loss of coordination was most pronounced at P60 and less prominent at age extremes. Slower traverse time was noted in homozygous knockout mice only, consistent with the ataxia seen in rare individuals with biallelic loss of function mutations in Prrt2. We thus identify three age-dependent phenotypic windows in the mouse model, which recapitulate the pattern seen in humans with PRRT2-related diseases.
Emerging next-generation sequencing technologies have revolutionized the collection of genomic data for applications in bioforensics, biosurveillance, and for use in clinical settings. However, to make the most of these new data, new methodology needs to be developed that can accommodate large volumes of genetic data in a computationally efficient manner. We present a statistical framework to analyze raw next-generation sequence reads from purified or mixed environmental or targeted infected tissue samples for rapid species identification and strain attribution against a robust database of known biological agents. Our method, Pathoscope, capitalizes on a Bayesian statistical framework that accommodates information on sequence quality, mapping quality, and provides posterior probabilities of matches to a known database of target genomes. Importantly, our approach also incorporates the possibility that multiple species can be present in the sample and considers cases when the sample species/strain is not in the reference database. Furthermore, our approach can accurately discriminate between very closely related strains of the same species with very little coverage of the genome and without the need for multiple alignment steps, extensive homology searches, or genome assembly—which are time-consuming and labor-intensive steps. We demonstrate the utility of our approach on genomic data from purified and in silico “environmental” samples from known bacterial agents impacting human health for accuracy assessment and comparison with other approaches.The accurate and rapid identification of species and strains of pathogens is an essential component of biosurveillance from both human health and biodefense perspectives (Vaidyanathan 2011). For example, misidentification was among the issues that resulted in a 3-wk delay in accurate diagnosis of the recent outbreak of hemorrhagic Escherichia coli being due to strain O104:H4, resulting in over 3800 infections across 13 countries in Europe with 54 deaths (Frank et al. 2011). The most accurate diagnostic information, necessary for species identification and strain attribution, comes from the most refined level of biological data—genomic DNA sequences (Eppinger et al. 2011). Advances in DNA-sequencing technologies allows for the rapid collection of extraordinary amounts of genomic data, yet robust approaches to analyze this volume of data are just developing, from both statistical and algorithmic perspectives.Next-generation sequencing approaches have revolutionized the way we collect DNA sequence data, including for applications in pathology, bioforensics, and biosurveillance. Given a particular clinical or metagenomic sample, our goal is to identify the specific species, strains, or substrains present in the sample, as well as accurately estimate the proportions of DNA originating from each source genome in the sample. Current approaches for next-gen sequencing usually have read lengths between 25 and 1000 bp; however, these sequencing technologies include error rates that vary by approach and by samples. Such variation is typically less important for species identification given the relatively larger genetic divergences among species than among individuals within species. But for strain attribution, sequencing error has the potential to swamp out discriminatory signal in a data set, necessitating highly sensitive and refined computational models and a robust database for both species identification and strain attribution.Current methods for classifying metagenomic samples rely on one or more of three general approaches: composition or pattern matching (McHardy et al. 2007; Brady and Salzberg 2009; Segata et al. 2012), taxonomic mapping (Huson et al. 2007; Meyer et al. 2008; Monzoorul Haque et al. 2009; Gerlach and Stoye 2011; Patil et al. 2012; Segata et al. 2012), and whole-genome assembly (Kostic et al. 2011; Bhaduri et al. 2012). Composition and pattern-matching algorithms use predetermined patterns in the data, such as taxonomic clade markers (Segata et al. 2012), k-mer frequency, or GC content, often coupled with sophisticated classification algorithms such as support vector machines (McHardy et al. 2007; Patil et al. 2012) or interpolated Markov Models (Brady and Salzberg 2009) to classify reads to the species of interest. These approaches require intensive preprocessing of the genomic database before application. In addition, the classification rule and results can often change dramatically depending on the size and composition of the genome database.Taxonomy-based approaches typically rely on a “lowest common ancestor” approach (Huson et al. 2007), meaning that they identify the most specific taxonomic group for each read. If a read originates from a genomic region that shares homology with other organisms in the database, the read is assigned to the lowest taxonomic group that contains all of the genomes that share the homologous region. These methods are typically highly accurate for higher-level taxonomic levels (e.g., phylum and family), but experience reduced accuracy at lower levels (e.g., species and strain) (Gerlach and Stoye 2011). Furthermore, these approaches are not informative when the reads originate from one or more species or strains that are closely related to each other or different organisms in the database. In these cases, all of the reads can be reassigned to higher-level taxonomies, thus failing to identify the specific species or strains contained in the sample.Assembly-based algorithms can often lead to the most accurate strain identification. However, these methods also require the assembly of a whole genome from a sample, which is a computationally difficult and time-consuming process that requires large numbers of reads to achieve an adequate accuracy—often on the order of 50–100× coverage of the target genome (Schatz et al. 2010). Given current sequencing depths, obtaining this level of coverage is usually possible for purified samples, but coverage levels may not be sufficient for mixed samples or in multiplexed sequencing runs. Assembly approaches are further complicated by the fact that data collection at a crime scene or hospital might include additional environmental components in the biological sample (host genome or naturally occurring bacterial and viral species), thus requiring multiple filtering and alignment steps in order to obtain reads specific to the pathogen of interest.Here we describe an accurate and efficient approach to analyze next-generation sequence data for species identification and strain attribution that capitalizes on a Bayesian statistical framework implemented in the new software package Pathoscope v1.0. Our approach accommodates information on sequence quality, mapping quality, and provides posterior probabilities of matches to a known database of reference genomes. Importantly, our approach incorporates the possibility that multiple species can be present in the sample or that the target strain is not even contained within the reference database. It also accurately discriminates between very closely related strains of the same species with much less than 1× coverage of the genome and without the need for sequence assembly or complex preprocessing of the database or taxonomy. No other method in the literature can identify species or substrains in such a direct and automatic manner and without the need for large numbers of reads. We demonstrate our approach through application to next-generation DNA sequence data from a recent outbreak of the hemorrhagic E. coli (O104:H4) strain in Europe (Frank et al. 2011; Rohde et al. 2011; Turner 2011) and on purified and in silico mixed samples from several other known bacterial agents that impact human health. Software and data examples for our approach are freely available for download at https://sourceforge.net/projects/pathoscope/. 相似文献
Thrombopoietin (TPO) or MpI ligand is known to stimulate megakaryocyte (MK) proliferation and differentiation. To identify the earliest human hematopoietic cells on which TPO acts, we cultured single CD34+Thy- 1+Lin- adult bone marrow cells in the presence of TPO alone, with TPO and interleukin-3 (IL-3), or with TPO and c-kit ligand (KL) in the presence of a murine stromal cell line (Sys1). Two distinct growth morphologies were observed: expansion of up to 200 blast cells with subsequent differentiation to large refractile CD41b+ MKs within 3 weeks or expansion to 200-10,000 blast cells, up to 25% of which expressed CD34. The latter blast cell expansions occurred over a 3- to 6-week period without obvious MK differentiation. Morphological staining, analysis of surface marker expression, and colony formation analysis revealed that these populations consisted predominantly of cells committed to the myelomonocytic lineage. The addition of IL-3 to TPO-containing cultures increased the extent of proliferation of single cells, whereas addition of KL increased the percentage of CD34+ cells among the expanding cell populations. Production of multiple colony- forming unit-MK from single CD34+Thy-1+Lin- cells in the presence of TPO was also demonstrated. In limiting dilution assays of CD34+Lin- cells, TPO was found to increase the size and frequency of cobblestone areas at 4 weeks in stromal cultures in the presence of leukemia inhibitory factor and IL-6. In stroma-free cultures, TPO activated a quiescent CD34+Lin-Rhodamine 123lo subset of primitive hematopoietic progenitor cells into cycle, without loss of CD34 expression. These data demonstrate that TPO acts directly on and supports division of cells more primitive than those committed to the MK lineage. 相似文献