首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   442篇
  免费   20篇
  国内免费   7篇
耳鼻咽喉   1篇
儿科学   16篇
妇产科学   4篇
基础医学   53篇
口腔科学   4篇
临床医学   50篇
内科学   121篇
皮肤病学   2篇
神经病学   26篇
特种医学   55篇
外科学   19篇
综合类   6篇
一般理论   1篇
预防医学   59篇
药学   21篇
中国医学   1篇
肿瘤学   30篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   9篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   8篇
  2013年   14篇
  2012年   23篇
  2011年   24篇
  2010年   9篇
  2009年   12篇
  2008年   9篇
  2007年   17篇
  2006年   13篇
  2005年   8篇
  2004年   12篇
  2003年   12篇
  2002年   10篇
  2001年   7篇
  2000年   6篇
  1999年   13篇
  1998年   12篇
  1997年   14篇
  1996年   8篇
  1995年   5篇
  1994年   18篇
  1993年   11篇
  1992年   18篇
  1991年   10篇
  1990年   8篇
  1989年   18篇
  1988年   16篇
  1987年   19篇
  1986年   11篇
  1985年   8篇
  1984年   4篇
  1983年   7篇
  1982年   5篇
  1981年   10篇
  1980年   5篇
  1978年   4篇
  1977年   3篇
  1975年   3篇
  1974年   5篇
  1919年   4篇
  1900年   1篇
  1899年   1篇
排序方式: 共有469条查询结果,搜索用时 0 毫秒
41.

Background  

Recent studies have reported the clinical importance of CYP2C19 and ABCB1 polymorphisms in an individualized approach to clopidogrel treatment. The aims of this study were to evaluate the frequencies of CYP2C19 and ABCB1 polymorphisms and to identify the clopidogrel-predicted metabolic phenotypes according to ethnic groups in a sample of individuals representative of a highly admixtured population.  相似文献   
42.
43.
44.
Melanotrope cells of the amphibian pituitary pars intermedia produce alpha-melanophore-stimulating hormone (alpha-MSH), a peptide which causes skin darkening during adaptation to a dark background. The secretory activity of the melanotrope of the South African clawed toad Xenopus laevis is regulated by multiple factors, both classical neurotransmitters and neuropeptides from the brain. This review concerns the plasticity displayed in this intermediate lobe neuroendocrine interface during physiological adaptation to the environment. The plasticity includes dramatic morphological plasticity in both pre- and post-synaptic elements of the interface. Inhibitory neurons in the suprachiasmatic nucleus, designated suprachiasmatic melanotrope-inhibiting neurons (SMINs), possess more and larger synapses on the melanotrope cells in white than in black-background adapted animals; in the latter animals the melanotropes are larger and produce more proopiomelanocortin (POMC), the precursor of alpha-MSH. On a white background, pre-synaptic SMIN plasticity is reflected by a higher expression of inhibitory neuropeptide Y (NPY) and is closely associated with postsynaptic melanotrope plasticity, namely a higher expression of the NPY Y1 receptor. Interestingly, melanotrope cells in such animals also display higher expression of the receptors for thyrotropin-releasing hormone (TRH) and urocortin 1, two neuropeptides that stimulate alpha-MSH secretion. Possibly, in white-adapted animals melanotropes are sensitized to neuropeptide stimulation so that, when the toad moves to a black background, they can immediately initiate alpha-MSH secretion to achieve rapid adaptation to the new background condition. The melanotrope cell also produces brain-derived neurotrophic factor (BDNF), which is co-sequestered with alpha-MSH in secretory granules within the cells. The neurotrophin seems to control melanotrope cell plasticity in an autocrine way and we speculate that it may also control presynaptic SMIN plasticity.  相似文献   
45.

Introduction

The protective effect of glutamine, as a pharmacological agent against lung injury, has been reported in experimental sepsis; however, its efficacy at improving oxygenation and lung mechanics, attenuating diaphragm and distal organ injury has to be better elucidated. In the present study, we tested the hypothesis that a single early intravenous dose of glutamine was associated not only with the improvement of lung morpho-function, but also the reduction of the inflammatory process and epithelial cell apoptosis in kidney, liver, and intestine villi.

Methods

Seventy-two Wistar rats were randomly assigned into four groups. Sepsis was induced by cecal ligation and puncture surgery (CLP), while a sham operated group was used as control (C). One hour after surgery, C and CLP groups were further randomized into subgroups receiving intravenous saline (1 ml, SAL) or glutamine (0.75 g/kg, Gln). At 48 hours, animals were anesthetized, and the following parameters were measured: arterial oxygenation, pulmonary mechanics, and diaphragm, lung, kidney, liver, and small intestine villi histology. At 18 and 48 hours, Cytokine-Induced Neutrophil Chemoattractant (CINC)-1, interleukin (IL)-6 and 10 were quantified in bronchoalveolar and peritoneal lavage fluids (BALF and PLF, respectively).

Results

CLP induced: a) deterioration of lung mechanics and gas exchange; b) ultrastructural changes of lung parenchyma and diaphragm; and c) lung and distal organ epithelial cell apoptosis. Glutamine improved survival rate, oxygenation and lung mechanics, minimized pulmonary and diaphragmatic changes, attenuating lung and distal organ epithelial cell apoptosis. Glutamine increased IL-10 in peritoneal lavage fluid at 18 hours and bronchoalveolar lavage fluid at 48 hours, but decreased CINC-1 and IL-6 in BALF and PLF only at 18 hours.

Conclusions

In an experimental model of abdominal sepsis, a single intravenous dose of glutamine administered after sepsis induction may modulate the inflammatory process reducing not only the risk of lung injury, but also distal organ impairment. These results suggest that intravenous glutamine may be a potentially beneficial therapy for abdominal sepsis.  相似文献   
46.
Light and temperature stimuli act via various brain centers and neurochemical messengers on the pituitary melanotrope cells of Xenopus laevis to control distinct subcellular activities such as the biosynthesis, processing, and release of alpha-melanophore-stimulating hormone (alphaMSH). The melanotrope signal transduction involves the action of a large repertoire of neurotransmitter and neuropeptide receptors and the second messengers cAMP and Ca(2+). Here we briefly review this signaling mechanism and then present new data on two aspects of this process, viz. the presence of a stimulatory beta-adrenergic receptor acting via cAMP and the egress of cAMP from the melanotrope upon a change of alphaMSH release activity.  相似文献   
47.
The periodic albino of Xenopus laevis displays a transitory presence of black melanin pigment in the embryo but looses this during tadpole development. This mutation, involving a recessive allele, affects melanogenesis in dermal melanophore pigment cells. It has been suggested that the mutation is intrinsic to the melanophore cell itself or, alternatively, reflects malfunction in the neuroendocrine system that regulates melanophore cell function. This latter system, involving pituitary melanotrope cells which produces α-melanophore stimulating hormone (α-MSH), is responsible for stimulating the production and dispersion of melanin pigment in dermal melanophores. The purpose of the present study was to determine to which degree the albinism is intrinsic to the melanophore or involves neuroendocrine malfunction. Experiments involved transplantation of presumptive melanophores from wild-type to albino embryos, and vice versa, immunocytochemical analysis of the albino neuroendocrine system and the creation of wild-type/albino parabiotic animals to determine if the neuroendocrine system of the albino can support melanotrope cell function. We show that the albino has a functional neuroendocrine system and conclude that the defect in the albino primarily affects the melanophore cell, possibly rendering it incapable of responding to α-MSH. It is also apparent from our results that in later stages of development the cellular environment of the melanotrope cell does become important to its development, but the nature of the critical cellular factors involved remains to be determined.  相似文献   
48.
The chemokine receptor CXCR4 functions as a fusion coreceptor for T cell tropic and dual-tropic HIV-1 strains. To identify regions of CXCR4 that are important for coreceptor function, CXCR4–CXCR2 receptor chimeras were tested for the ability to support HIV-1 envelope (env) protein-mediated membrane fusion. Receptor chimeras containing the first and second extracellular loops of CXCR4 supported fusion by T tropic and dual-tropic HIV-1 and HIV-2 strains and binding of a monoclonal antibody to CXCR4, 12G5, that blocks CXCR4-dependent infection by some virus strains. The second extracellular loop of CXCR4 was sufficient to confer coreceptor function to CXCR2 for most virus strains tested but did not support binding of 12G5. Truncation of the CXCR4 cytoplasmic tail or mutation of a conserved DRY motif in the second intracellular loop did not affect coreceptor function, indicating that phosphorylation of the cytoplasmic tail and the DRY motif are not required for coreceptor function. The results implicate the involvement of multiple CXCR4 domains in HIV-1 coreceptor function, especially the second extracellular loop, though the structural requirements for coreceptor function were somewhat variable for different env proteins. Finally, a hybrid receptor in which the amino terminus of CXCR4 was replaced by that of CCR5 was active as a coreceptor for M tropic, T tropic, and dual-tropic env proteins. We propose that dual tropism may evolve in CCR5-restricted HIV-1 strains through acquisition of the ability to utilize the first and second extracellular loops of CXCR4 while retaining the ability to interact with the CCR5 amino-terminal domain.  相似文献   
49.
The extracellular Ca(2+)-sensing receptor (CaR) is expressed in many different organs in various species, ranging from mammals to fish. In some of these organs, this G protein-coupled receptor is involved in the control of systemic Ca(2+) homeostasis, whereas in other organs its role is unclear (e.g. in the pituitary gland). We have characterized the CaR in the neuroendocrine melanotrope cell of the intermediate pituitary lobe of the South African clawed toad Xenopus laevis. First, the presence of CaR mRNA was demonstrated by RT-PCR and in situ hybridization. Then it was shown that activation of the CaR by an elevated extracellular Ca(2+) concentration and different CaR-activators, including L-phenylalanine and spermine, stimulates both Ca(2+) oscillations and secretion from the melanotrope. Furthermore, it was revealed that activation of the receptor stimulates Ca(2+) oscillations through opening of voltage-operated Ca(2+) channels in the plasma membrane of the melanotropes. Finally, it was shown that the CaR activator L-phenylalanine could induce the biosynthesis of proopiomelanocortin in the intermediate lobe. Thus, in this study it is demonstrated that the CaR is present and functional in a defined cell type of the pituitary gland, the amphibian melanotrope cell.  相似文献   
50.
In secretory cells filamentous actin (f-actin) is mostly present subjacent to the plasma membrane, referred to as cortical actin. While the function of cortical actin in the secretory processes has been extensively studied, little attention has been given to the role of actin in signal transduction and intracellular second messenger dynamics. Analysis with the fluorescent f-actin probe Alexa-phalloidin shows that Xenopus laevis pituitary melanotrope cells possess a thick cortical actin ring. This cell is a good model to study the possible function(s) of f-actin in signal transduction processes. Regulation of the release of alpha-MSH from this cell involves a convergence of various receptor mechanisms to regulate the activity of voltage-operated Ca2+ channels. We have considered three potential functions for the cortical actin ring in the signaling process of the melanotrope: (1) it functions as a barrier for access of secretory granules to the membrane for exocytosis, (2) it is involved in anchoring components of the Ca2+ signalling machinery of the cell, and/or (3) it helps to form a scaffold for components of the signal transduction machinery used by the various neurotransmitters and neuropeptides that regulate the activity of the cell. To test these possibilities we have examined the effect of the f-actin depolymerising toxin latrunculin B on Ca2+ signaling, signal transduction and alpha-MSH secretion in the melanotrope. We show that while the toxin is effective in disrupting the cortical actin ring, this treatment has no effect on either Ca2+ signaling or the signal transduction processes studied. The toxin does induce an increase in alpha-MSH release, indicating that the cortical actin ring acts as a barrier for secretory granule access to the membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号