首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91398篇
  免费   6730篇
  国内免费   315篇
耳鼻咽喉   984篇
儿科学   2327篇
妇产科学   1278篇
基础医学   12246篇
口腔科学   1062篇
临床医学   9976篇
内科学   19340篇
皮肤病学   1041篇
神经病学   8949篇
特种医学   3470篇
外国民族医学   1篇
外科学   14756篇
综合类   1079篇
现状与发展   1篇
一般理论   100篇
预防医学   6937篇
眼科学   2181篇
药学   6266篇
中国医学   141篇
肿瘤学   6308篇
  2023年   720篇
  2022年   1143篇
  2021年   2620篇
  2020年   1482篇
  2019年   2389篇
  2018年   2776篇
  2017年   1990篇
  2016年   2084篇
  2015年   2421篇
  2014年   3567篇
  2013年   4506篇
  2012年   7221篇
  2011年   7609篇
  2010年   4086篇
  2009年   3635篇
  2008年   6035篇
  2007年   6358篇
  2006年   5788篇
  2005年   5846篇
  2004年   5236篇
  2003年   4837篇
  2002年   4427篇
  2001年   824篇
  2000年   656篇
  1999年   814篇
  1998年   940篇
  1997年   712篇
  1996年   603篇
  1995年   530篇
  1994年   490篇
  1993年   495篇
  1992年   406篇
  1991年   328篇
  1990年   314篇
  1989年   290篇
  1988年   281篇
  1987年   257篇
  1986年   237篇
  1985年   287篇
  1984年   297篇
  1983年   238篇
  1982年   311篇
  1981年   316篇
  1980年   231篇
  1979年   174篇
  1978年   179篇
  1977年   164篇
  1976年   126篇
  1975年   91篇
  1974年   94篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
982.
Increases in snack consumption associated with Westernized lifestyles provide an opportunity to introduce nutritious foods into poor diets. We describe two 10-wk-long open label, single group assignment human studies that measured the effects of two snack prototypes containing fiber preparations from two sustainable and scalable sources; the byproducts remaining after isolation of protein from the endosperm of peas and the vesicular pulp remaining after processing oranges for the manufacture of juices. The normal diets of study participants were supplemented with either a pea- or orange fiber-containing snack. We focused our analysis on quantifying the abundances of genes encoding carbohydrate-active enzymes (CAZymes) (glycoside hydrolases and polysaccharide lyases) in the fecal microbiome, mass spectrometric measurements of glycan structures (glycosidic linkages) in feces, plus aptamer-based assessment of levels of 1,300 plasma proteins reflecting a broad range of physiological functions. Computational methods for feature selection identified treatment-discriminatory changes in CAZyme genes that correlated with alterations in levels of fiber-associated glycosidic linkages; these changes in turn correlated with levels of plasma proteins representing diverse biological functions, including transforming growth factor type β/bone morphogenetic protein-mediated fibrosis, vascular endothelial growth factor-related angiogenesis, P38/MAPK-associated immune cell signaling, and obesity-associated hormonal regulators. The approach used represents a way to connect changes in consumer microbiomes produced by specific fiber types with host responses in the context of varying background diets.

Advances in our understanding of the role of the gut microbiome in regulating many aspects of human physiology hold the promise of evolving our view of human nutrition by establishing mechanistic connections between the foods we consume and how they affect health status. One manifestation of this effort is a series of studies, performed on well-phenotyped cohorts, that seek to relate features of gut microbial community composition (organisms, genes), dietary practices, and pre- and postprandial cardiometabolic responses to test meals (14). A key question raised by these initiatives relates to the nature of the “bioactive” components of foods. Specifically, what are the nutrients utilized by various gut community members or microbiome-encoded metabolic pathways? What products are produced by biotransformation of these nutrients? How are these products linked to specific host physiologic (or pathophysiologic) processes?Plant-derived dietary fibers represent a “poster child” for these efforts and illustrate the formidable challenges faced. The health benefits of dietary fibers are widely known, as is their inadequate representation in Western diets. However, natural fibers are structurally complex and highly diverse. They contain numerous, typically undefined polysaccharide structures and largely unspecified protein, lipid, and small molecule constituents. Their composition varies as a function of their origin (food staple and cultivar), the different methods employed to recover them from these sources, as well as the different techniques used to incorporate them into processed foods with acceptable organoleptic properties (5). Moreover, analyzing the host effects of metabolism of different fibers is confounded by the fact that there is substantial intra- and interpersonal variation in microbiome configuration (6, 7).Snacking is becoming an ever more dominant feature of daily life worldwide and thus provides an opportunity to introduce nutritious ingredients, such as fibers, into diets. However, obtaining structure-activity relationships for specific fiber types and their corresponding targets in the gut community is foundational for designing snack foods that evoke and/or reinforce microbiome responses that are beneficial to the host.Degradation of dietary polysaccharides is a function primarily performed by bacterial carbohydrate-active enzymes (CAZymes). The gut microbiome harbors tens of thousands of CAZyme genes belonging to at least 136 glycoside hydrolase (GH) and 29 polysaccharide lyase (PL) families [extrapolated and updated from El Kaoutari et al. (8)]. In contrast, the human genome only contains 98 GH and no PL genes (9), of which <20% contribute to the processing of dietary glycans.In the current study, we test the effects of dietary supplementation with two snack food prototypes, one containing pea fiber and the other orange fiber, in two pilot studies of overweight and obese individuals consuming their normal, unrestricted diets. Our strategy was to focus on fiber-associated changes in the abundances of microbial GH and PL genes to determine whether responses to the pea or orange fiber prototypes in the gut microbiome and host are decipherable against a background of varying dietary practices and starting microbiome configurations. Higher order singular value decomposition (10) was utilized as a feature selection tool to identify treatment-discriminating changes in GH and PL gene representation. Mass spectrometric assays of the levels of fecal glycan structures (glycosidic linkages) were subsequently performed and the results were correlated with changes in the abundances of treatment-discriminating GH and PL genes with known or predicted substrate specificities. Our analysis concluded by measuring changes in levels of 1,305 plasma proteins in each study participant as a function of fiber treatment and applying computational tools to identify links between these microbiome and plasma proteome changes in response to fiber consumption. Our results provide an approach, using pilot human studies, for selecting specific fiber preparations, plus informative microbiome and host biomarkers, that can be advanced to proof-of-concept clinical trials which assess their capacity for precise manipulation of microbiome and host features.  相似文献   
983.
984.
985.
Background To understand the relationship between key non-canonical NF-κB kinase IKK-alpha(α), tumour mutational profile and survival in primary colorectal cancer.Methods Immunohistochemical expression of IKKα was assessed in a cohort of 1030 patients who had undergone surgery for colorectal cancer using immunohistochemistry. Mutational tumour profile was examined using a customised gene panel. Immunofluorescence was used to identify the cellular location of punctate IKKα expression.Results Two patterns of IKKα expression were observed; firstly, in the tumour cell cytoplasm and secondly as discrete ‘punctate’ areas in a juxtanuclear position. Although cytoplasmic expression of IKKα was not associated with survival, high ‘punctate’ IKKα expression was associated with significantly reduced cancer-specific survival on multivariate analysis. High punctate expression of IKKα was associated with mutations in KRAS and PDGFRA. Dual immunofluorescence suggested punctate IKKα expression was co-located with the Golgi apparatus.Conclusions These results suggest the spatial expression of IKKα is a potential biomarker in colorectal cancer. This is associated with a differential mutational profile highlighting possible distinct signalling roles for IKKα in the context of colorectal cancer as well as potential implications for future treatment strategies using IKKα inhibitors.Subject terms: Prognostic markers, Colorectal cancer  相似文献   
986.
987.
The quaternary organization of rhodopsin-like G protein-coupled receptors in native tissues is unknown. To address this we generated mice in which the M1 muscarinic acetylcholine receptor was replaced with a C-terminally monomeric enhanced green fluorescent protein (mEGFP)–linked variant. Fluorescence imaging of brain slices demonstrated appropriate regional distribution, and using both anti-M1 and anti–green fluorescent protein antisera the expressed transgene was detected in both cortex and hippocampus only as the full-length polypeptide. M1-mEGFP was expressed at levels equal to the M1 receptor in wild-type mice and was expressed throughout cell bodies and projections in cultured neurons from these animals. Signaling and behavioral studies demonstrated M1-mEGFP was fully active. Application of fluorescence intensity fluctuation spectrometry to regions of interest within M1-mEGFP–expressing neurons quantified local levels of expression and showed the receptor was present as a mixture of monomers, dimers, and higher-order oligomeric complexes. Treatment with both an agonist and an antagonist ligand promoted monomerization of the M1-mEGFP receptor. The quaternary organization of a class A G protein-coupled receptor in situ was directly quantified in neurons in this study, which answers the much-debated question of the extent and potential ligand-induced regulation of basal quaternary organization of such a receptor in native tissue when present at endogenous expression levels.

Measuring and understanding the extent and potential significance of quaternary organization of members of the class A (rhodopsin-like) family of G protein-coupled receptors (GPCRs) have both fascinated and frustrated researchers for many years (1, 2). Over time, a wide range of methods have been applied to address this question, and many different GPCRs have been examined. Outcomes have ranged from assertions that such receptors are monomeric and that results consistent with other conclusions reflect either artifacts of the method of measurement or that studies have been performed at nonphysiological levels of expression of the receptor being studied, to those that have suggested rather stable dimeric or tetrameric complexes (1). Only in the case of rhodopsin, the photon receptor expressed at very high levels (in the range of 24,000–30,000 molecules/µm2) in rod outer segments of the eye, have detailed studies been conducted in situ on a class A GPCR. In this example, various studies have shown that rhodopsin is organized as rows of dimers (3, 4). However, to our knowledge, no other GPCR is expressed natively at levels akin to rhodopsin. As such, although a substantial number of studies, generally performed in transfected cell lines or in artificial bilayer systems, have provided evidence that other GPCRs can and do form dimeric and/or higher-order quaternary complexes in a concentration-dependent manner (1, 2), how levels of expression required to observe such complexes relate to expression levels in native cells and tissues has been poorly defined, as is the stability of such complexes and whether they are regulated by ligand binding.Developments in fluorescence fluctuation analysis (FFA) have facilitated efforts to define the oligomeric status of transmembrane receptor proteins (5, 6). Unlike methods based on resonance energy transfer, only a single fluorophore-linked protein is required to be expressed to use FFA. It is, therefore, more practical to use such methods in native cells and tissues if linked to genome-editing approaches and/or the generation of transgenic “knock-in” animal models in which a receptor of interest is replaced with a fluorophore-tagged, modified form of the receptor. Moreover, the recent introduction of fluorescence intensity fluctuation (FIF) spectrometry (710) has overcome issues with other methods based on FFA that result in information being compressed due to averaging of oligomer-size data from interrogated regions of interest (RoIs) in which complex mixtures of oligomers of different sizes may be present (7, 8).To define whether the class A M1 muscarinic acetylcholine receptor is present in hippocampal and cortical neurons as strict monomers or as a range of monomeric, dimeric, and, potentially, oligomeric complexes, we applied FIF spectrometry to images of such neurons isolated from a line of transgenic mice in which we replaced the M1 receptor with a form of the receptor that includes C-terminally linked monomeric enhanced green fluorescent protein (mEGFP). We first show that both expression levels and function of the introduced M1-mEGFP construct appear equivalent to the native M1 receptor in wild-type (WT) mice, using a range of methods and measures ranging from [3H]ligand binding and cell signaling assays to locomotion. We then demonstrate in hippocampal and cortical neurons that in the basal state, the M1-mEGFP construct is present as a mixture of monomers and dimeric or oligomeric complexes. We also show that the presence of either an agonist or an antagonist ligand promotes monomerization of the receptor. In these studies, we combined analysis of images of a fluorophore-modified receptor in situ with calculation of receptor oligomer complexity. The studies provide a clear and unambiguous answer to a long-standing question that has been the subject of considerable debate (1113) but that has previously been restricted to studies performed on transfected cell lines. Moreover, these studies are a model for subsequent studies for researchers who plan to explore the topic of dimerization of rhodopsin-family GPCRs.  相似文献   
988.
A wide variety of new therapeutic options for Multiple Myeloma (MM) have recently become available, extending progression-free and overall survival for patients in meaningful ways. However, these treatments are not curative, and patients eventually relapse, necessitating decisions on the appropriate choice of treatment(s) for the next phase of the disease. Additionally, an important subset of MM patients will prove to be refractory to the majority of the available treatments, requiring selection of effective therapies from the remaining options. Immunomodulatory agents (IMiDs), proteasome inhibitors, monoclonal antibodies, and alkylating agents are the major classes of MM therapies, with several options in each class. Patients who are refractory to one agent in a class may be responsive to a related compound or to a drug from a different class. However, rules for selection of alternative treatments in these situations are somewhat empirical and later phase clinical trials to inform those choices are ongoing. To address these issues the NCI Multiple Myeloma Steering Committee formed a relapsed/refractory working group to review optimal treatment choices, timing, and sequencing and provide recommendations. Additional issues considered include the role of salvage autologous stem cell transplantation, risk stratification, targeted approaches for genetic subsets of MM, appropriate clinical trial endpoints, and promising investigational agents. This report summarizes the deliberations of the working group and suggests potential avenues of research to improve the precision, timing, and durability of treatments for Myeloma.Subject terms: Combination drug therapy, Cancer therapeutic resistance, Targeted therapies  相似文献   
989.
Prospective follow-up information from the throat culturing results of 1,653 Eskimo children in 12 Alaskan villages was used to evaluate the effect of duration and intensity of a streptococcal control program begun in 1971 while controlling for several other risk factors related to streptococcal colonization. Relative risks of colonization for each of the subsequent study years relative to the first year indicate that the risk of colonization decreased over the duration of the study by 42% in Year 2 to 55% in Year 4 (P less than 0.0001). Cost-cutting measures such as lengthening the time interval between routine throat cultures led to a 37% increase in the risk of colonization (P = 0.0002). A comparison of the number of cases of acute rheumatic fever during the 5-year period before the streptococcal control program with the number of cases during the 5-year program period showed that cases in villages with the program decreased from 11 to 0. In a similar group of comparison villages without the program, the number of cases decreased from 7 to 4. A benefit-cost study of the program indicates that benefit exceeds cost. These findings and the changes in the carriage of streptococcal organisms during the control program underscore the importance of such long-term programs with regularly scheduled culturing in high-risk populations of children.  相似文献   
990.
Objectives: Chronic ventilator dependency in cervical tetraplegia is associated with substantial morbidity. When non-invasive weaning methods have failed the primary surgical treatment is diaphragm pacing. Phrenic nerve integrity and diaphragm motor units are requirements for effective pacing but may need to be restored for successful weaning. A surgical algorithm that includes: 1. Diaphragm pacing, 2. Phrenic nerve reconstruction, and 3. Diaphragm muscle replacement, may provide the capability of reducing or reversing ventilator dependency in virtually all cervical tetraplegics.Design: Prospective case series.Setting: A university-based hospital from 2015 to 2019.Participants: Ten patients with ventilator-dependent cervical tetraplegia.Interventions: I. Pacemaker alone, II. Pacemaker + phrenic nerve reconstruction, or III. Pacemaker + diaphragm muscle replacement.Outcome measures: Time from surgery to observed reduction in ventilator requirements (↓VR), ventilatory needs as of most recent follow-up [no change (NC), partial weaning (PW, 1–12 h/day), or complete weaning (CW, >12 h/day)], and complications.Results: Both patients in Group I achieved CW at 6-month follow-up. Two patients in Group II achieved CW, and in another two patients PW was achieved, at 1.5–2-year follow-up. The remaining two patients are NC at 6 and 8-month follow-up, respectively. In group III, both patients achieved PW at 2-year follow-up. Complications included mucous plugging (n = 1) and pacemaker malfunction requiring revision (n = 3).Conclusion: Although more investigation is necessary, phrenic nerve reconstruction or diaphragm muscle replacement performed (when indicated) with pacemaker implantation may allow virtually all ventilator-dependent cervical tetraplegics to partially or completely wean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号