首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6892篇
  免费   464篇
  国内免费   26篇
耳鼻咽喉   147篇
儿科学   164篇
妇产科学   100篇
基础医学   832篇
口腔科学   121篇
临床医学   771篇
内科学   1225篇
皮肤病学   114篇
神经病学   553篇
特种医学   260篇
外科学   1238篇
综合类   75篇
一般理论   13篇
预防医学   623篇
眼科学   91篇
药学   573篇
中国医学   27篇
肿瘤学   455篇
  2023年   70篇
  2022年   104篇
  2021年   229篇
  2020年   117篇
  2019年   206篇
  2018年   212篇
  2017年   174篇
  2016年   174篇
  2015年   208篇
  2014年   287篇
  2013年   359篇
  2012年   530篇
  2011年   500篇
  2010年   329篇
  2009年   277篇
  2008年   465篇
  2007年   455篇
  2006年   451篇
  2005年   390篇
  2004年   343篇
  2003年   314篇
  2002年   287篇
  2001年   56篇
  2000年   47篇
  1999年   35篇
  1998年   42篇
  1997年   42篇
  1996年   43篇
  1995年   35篇
  1994年   27篇
  1993年   37篇
  1992年   29篇
  1991年   17篇
  1990年   28篇
  1989年   32篇
  1988年   25篇
  1987年   15篇
  1985年   21篇
  1984年   23篇
  1983年   20篇
  1982年   34篇
  1981年   19篇
  1980年   14篇
  1979年   16篇
  1978年   16篇
  1973年   18篇
  1971年   12篇
  1969年   13篇
  1967年   13篇
  1941年   12篇
排序方式: 共有7382条查询结果,搜索用时 31 毫秒
71.
72.
Calcifying echinoid larvae respond to changes in seawater carbonate chemistry with reduced growth and developmental delay. To date, no information exists on how ocean acidification acts on pH homeostasis in echinoderm larvae. Understanding acid–base regulatory capacities is important because intracellular formation and maintenance of the calcium carbonate skeleton is dependent on pH homeostasis. Using H+-selective microelectrodes and the pH-sensitive fluorescent dye BCECF, we conducted in vivo measurements of extracellular and intracellular pH (pHe and pHi) in echinoderm larvae. We exposed pluteus larvae to a range of seawater CO2 conditions and demonstrated that the extracellular compartment surrounding the calcifying primary mesenchyme cells (PMCs) conforms to the surrounding seawater with respect to pH during exposure to elevated seawater pCO2. Using FITC dextran conjugates, we demonstrate that sea urchin larvae have a leaky integument. PMCs and spicules are therefore directly exposed to strong changes in pHe whenever seawater pH changes. However, measurements of pHi demonstrated that PMCs are able to fully compensate an induced intracellular acidosis. This was highly dependent on Na+ and HCO3, suggesting a bicarbonate buffer mechanism involving secondary active Na+-dependent membrane transport proteins. We suggest that, under ocean acidification, maintained pHi enables calcification to proceed despite decreased pHe. However, this probably causes enhanced costs. Increased costs for calcification or cellular homeostasis can be one of the main factors leading to modifications in energy partitioning, which then impacts growth and, ultimately, results in increased mortality of echinoid larvae during the pelagic life stage.  相似文献   
73.
The distal radio-ulnar joint can be a source of ulnar-sided wrist pain. The complex anatomy in this region of the wrist can make diagnosis of distal radio-ulnar joint problems challenging. An understanding of the anatomy can aid an accurate diagnosis. An overview of the anatomy, biomechanics and conditions of the distal radio-ulnar joint is provided, together with other common causes of ulnar-sided wrist pain.  相似文献   
74.
Though the consequences of nutritional iodine deficiency have been known for a long time, in Cambodia its elimination has only become a priority in the last 18 years. The Royal Government of Cambodia initiated the National Sub-Committee for Control of Iodine Deficiency Disorders in 1996 to fight this problem. Using three different surveys providing information across all provinces, we examined the compliance of salt iodization in Cambodia over the last 6 years. Salt samples from the 24 provinces were collect at the household level in 2008 (n = 566) and 2011 (n = 1275) and at the market level in 2014 (n = 1862) and analysed through a wavelength spectrophotometer for iodine content. According to the samples collected, the median iodine content significantly dropped from 22 mg/kg (25th/75th percentile: 2/37 mg/kg) in 2011 to 0 mg/kg in 2014 (25th/75th percentile: 0/8.9 mg/kg) (p < 0.001). The proportion of non-iodized salt within our collected salt drastically increased from 22% in 2011 to 62% in 2014 (p < 0.001). Since the international organizations ceased to support the procurement of iodine, the prevalence of salt compliant with the Cambodian declined within our samples. To date, the current levels of iodine added to tested salt are unsatisfactory as 92% of those salts do not meet the government requirements (99.6% of the coarse salt and 82.4% of the fine salt). This inappropriate iodization could illustrate the lack of periodic monitoring and enforcement from government entities. Therefore, government quality inspection should be reinforced to reduce the quantity of salt not meeting the national requirement.  相似文献   
75.
Locally adapted temperate tree populations exhibit genetic trade-offs among climate-related traits that can be exacerbated by selective breeding and are challenging to manage under climate change. To inform climatically adaptive forest management, we investigated the genetic architecture and impacts of selective breeding on four climate-related traits in 105 natural and 20 selectively bred lodgepole pine populations from western Canada. Growth, cold injury, growth initiation, and growth cessation phenotypes were tested for associations with 18,600 single-nucleotide polymorphisms (SNPs) in natural populations to identify “positive effect alleles” (PEAs). The effects of artificial selection for faster growth on the frequency of PEAs associated with each trait were quantified in breeding populations from different climates. Substantial shifts in PEA proportions and frequencies were observed across many loci after two generations of selective breeding for height, and responses of phenology-associated PEAs differed strongly among climatic regions. Extensive genetic overlap was evident among traits. Alleles most strongly associated with greater height were often associated with greater cold injury and delayed phenology, although it is unclear whether potential trade-offs arose directly from pleiotropy or indirectly via genetic linkage. Modest variation in multilocus PEA frequencies among populations was associated with large phenotypic differences and strong climatic gradients, providing support for assisted gene flow polices. Relationships among genotypes, phenotypes, and climate in natural populations were maintained or strengthened by selective breeding. However, future adaptive phenotypes and assisted gene flow may be compromised if selective breeding further increases the PEA frequencies of SNPs involved in adaptive trade-offs among climate-related traits.

Local adaptation of climate-related traits in widespread temperate conifers has been demonstrated for centuries using extensive long-term common garden experiments (1, 2). As early as the 17th century, foresters were instructed to recognize variation in desirable traits and select seed from trees with favorable phenotypes (3). Modern tree improvement programs systematically select upon genetic variation, primarily to achieve growth gains and meet economic objectives. Estimates of genetic variation and gains from selection made using quantitative genetic models assume many anonymous loci of small effect underlie both variation in continuously distributed phenotypes and their responses to selective breeding. However, the type, quantity, effect size, distribution, and dynamics of genes underlying locally adaptive phenotypic variation and responses to selective breeding in forest trees are still poorly understood (4).Directional selection over hundreds or thousands of generations has led to genomic features of domestication in agricultural crops including simplified genetic architectures underlying many traits, reduced genome-wide diversity, and numerous selective sweeps (57). Beyond high-gain, short-rotation clonal forestry [e.g., Eucalyptus spp. (8)], we know little about the effects of artificial selection on adaptive genetic variation in forest trees, yet many tree species undergo some degree of selective breeding. Two or three generations of conifer breeding is not expected to have the same magnitude of genetic effects seen in domesticated crops, but if artificial selection for increased productivity is detectable in conifer genomes, it may expose genetic relationships and potential sources of trade-offs between growth and climatically adaptive phenotypes.Climate-related adaptive traits are often intercorrelated due to pleiotropy, natural selection, or linkage disequilibrium (LD), so that strong directional selection on one trait can cause correlated responses in others. Pleiotropic allelic variants associated with phenotypes do not function in isolation. Antagonistic pleiotropic effects among traits can generate adaptive trade-offs among traits within populations, and limit gains from selection on a focal trait (9). Trait–trait correlations can also arise through strong selection acting in parallel on unlinked loci or from LD mediated by physical linkage of loci on chromosomes. Average genome-wide LD estimates in conifers appear to be low (10, 11) but may be greater (r2 of 0.2–0.4) within genes under strong selection (12).Conifer studies have identified putatively adaptive phenotype-associated alleles on a locus-by-locus basis using quantitative trait loci (QTL) mapping or genotype–phenotype associations (GPAs) (also known as genome-wide association studies [GWAS]) (13). Genotype–environment association analyses in conifers have identified putatively adaptive environmentally associated loci (e.g., 14, 15), but loci are usually anonymous relative to adaptive phenotypes. All of these approaches are biased toward detecting loci with large phenotypic effects, but expectations that genome scans will discover individual adaptive loci with large effects or frequency differences among populations may be biologically and statistically unrealistic (16, 17). Conifer GPA studies typically detect relatively few statistically significant loci, and locus-by-locus analyses are insufficient to characterize adaptive genome-wide variation associated with adaptive traits and signatures of selective breeding. Multilocus tests for adaptive polygenic signatures of selection have been developed (e.g., refs. 18 and 19), but significant limitations remain (reviewed in refs. 20 and 21).Uncertainty about the effects of selective breeding on adaptive genetic variation is layered upon expectations that forest trees will become maladapted as climates shift (22). Efforts are being made to estimate maladaptation using genome-wide variation associated with adaptive traits and climate (23, 24), because conserving, managing, and efficiently redeploying genetic variation associated with adaptive phenotypes will be a necessary element of strategies to mitigate the effects of shifting climates on forest resources (25). Assisted gene flow strategies in temperate and subboreal forests generally aim to move trees to cooler climates in anticipation of future warming, but trees must then contend with the increased short- to medium-term risk of maladaptation to damaging frost. This means cold tolerance is, perhaps surprisingly, an important trait when planning for warming climates.Genetic approaches have the potential to efficiently and accurately characterize local adaptation to climate. Understanding whether this potential can be realized in a technically robust and operationally feasible way, and whether selection for faster growth compromises genetic variation associated with phenotypic adaptation to climate, has far-reaching implications for developing effective assisted gene flow strategies that mitigate negative climate change impacts on forest health and timber production (26, 27). In this context, our research objectives are to 1) identify the genetic architecture of climate-related adaptive traits in interior lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.); 2) identify genome-wide effects of artificial selection for increased productivity on climate-related traits; and 3) assess the implications of genetic responses to selection for assisted gene flow strategies.Our study combines climatic data, genotype data from ∼50,000 lodgepole pine single-nucleotide polymorphisms (SNPs), and seedling phenotypic data for height, cold injury, growth initiation, and growth cessation traits. These data were collected from a seedling common garden that sampled reforestation seed lots from 105 natural populations and 20 breeding populations from across the species’ range in Alberta (AB) and British Columbia (BC), Canada (Fig. 1 and SI Appendix, Table S1). For each of the four traits, we identify range-wide GPAs using 929 seedlings from all 105 natural populations. Then for the 1% most strongly phenotype-associated SNPs, we examine how artificial selection within breeding populations has changed allele frequencies at individual SNP loci, within individual seedlings, populations (breeding zones), and three climatic regions (Fig. 1). Using elements from the approach of Turchin et al. (18), we study changes in frequency of the alleles that have a positive effect on adaptive traits (positive effect alleles [PEAs]). At each SNP locus, a PEA is the allele associated with increasing numeric values of the respective phenotype, determined in this case through GPA analyses in the natural seedling populations. PEAs reported here are associated with greater seedling height, greater cold injury, delayed growth initiation, and delayed growth cessation. To parse physical genetic linkage from allelic associations due to other causes, we compare LD estimated from our natural seedlings with estimates of recombination among haploid megagametophytes from a single maternal parent, where physical linkage is the only cause of LD. Integrating genetic, climatic, and phenotypic data gives us a robust basis to detect the effects of artificial selection on climate-related genotypes that are relevant to breeding and assisted gene flow strategies.Open in a separate windowFig. 1.Geographic origins of the natural and selected seedling populations sampled from across the range of lodgepole pine in Alberta (AB) and British Columbia (BC). Natural populations are represented by filled circles; selected seedling breeding zones are represented by filled polygons. The three climatic regions we used were AB, BC-Central, and BC-South. AB breeding zones are formally identified as A, B1, B2, C, J, and K1. BC-Central breeding zone abbreviations are as follows: BV, Bulkley Valley; CP, Central Plateau; and PG, Prince George. BC-South breeding zone abbreviations are as follows: EK, East Kootenay; NE, Nelson; and TO, Thompson–Okanagan. Reprinted from ref. 35, with permission from Elsevier.  相似文献   
76.
Microglia play a critical role in many processes fundamental to learning and memory in health and are implicated in Alzheimer’s pathogenesis. Minocycline, a centrally-penetrant tetracycline antibiotic, inhibits microglial activation and enhances long-term potentiation, synaptic plasticity, neurogenesis and hippocampal-dependent spatial memory in rodents, leading to clinical trials in human neurodegenerative diseases. However, the effects of minocycline on human memory have not previously been investigated. Utilising a double-blind, randomised crossover study design, we recruited 20 healthy male participants (mean 24.6 ± 5.0 years) who were each tested in two experimental sessions: once after 3 days of Minocycline 150 mg (twice daily), and once 3 days of placebo (identical administration). During each session, all completed an fMRI task designed to tap boundary- and landmark-based navigation (thought to rely on hippocampal and striatal learning mechanisms respectively). Given the rodent literature, we hypothesised that minocycline would selectively modulate hippocampal learning. In line with this, minocycline biased use of boundary- compared to landmark-based information (t980 = 3.140, p = 0.002). However, though this marginally improved performance for boundary-based objects (t980 = 1.972, p = 0.049), it was outweighed by impaired landmark-based navigation (t980 = 6.374, p < 0.001) resulting in an overall performance decrease (t980 = 3.295, p = 0.001). Furthermore, against expectations, minocycline significantly reduced activity during memory encoding in the right caudate (t977 = 2.992, p = 0.003) and five other cortical regions, with no significant effect in the hippocampus. In summary, minocycline impaired human spatial memory performance, likely through disruption of striatal processing resulting in greater biasing towards reliance on boundary-based navigation.Subject terms: Microglia, Hippocampus  相似文献   
77.
Burkitt lymphoma (BL) occurs at all ages, but the patterns of Epstein–Barr virus (EBV) positivity in relation to human immunodeficiency virus (HIV), immunoprofiles and age have not been fully explored. BL tissues from residual tissue repositories, and two academic centers in the United States were examined by expert hematopathologists for morphology, immunohistochemistry, MYC rearrangement, EBV‐encoded RNA (EBER), and diagnosed according to the 2008 WHO lymphoma classification. Analysis was done using frequency tables, Chi‐squared statistics, and Student's t‐test. Of 117 cases examined, 91 were confirmed as BL. The age distribution was 26%, 15%, 19%, and 29% for 0–19, 20–34, 35–59, 60+ years, and missing in 11%. MYC rearrangement was found in 89% and EBER positivity in 29% of 82 cases with results. EBER positivity varied with age (from 13% in age group 0–19 to 55% in age group 20–34, and fell to 25% in age group 60+ years, p = 0.08); with race (56% in Blacks/Hispanics vs 21% in Whites/Asians/Pacific Islanders, p = 0.006); and by HIV status (64% in HIV positive vs 22% in HIV negative cases, p = 0.03). EBER positivity was demonstrated in about one‐third of tumors and it was strongly associated with race and HIV status, and marginally with age‐group.  相似文献   
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号