首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13019篇
  免费   853篇
  国内免费   61篇
耳鼻咽喉   188篇
儿科学   301篇
妇产科学   244篇
基础医学   1834篇
口腔科学   1199篇
临床医学   1070篇
内科学   2861篇
皮肤病学   365篇
神经病学   880篇
特种医学   486篇
外国民族医学   1篇
外科学   1464篇
综合类   77篇
一般理论   6篇
预防医学   1302篇
眼科学   205篇
药学   874篇
中国医学   82篇
肿瘤学   494篇
  2023年   111篇
  2022年   287篇
  2021年   455篇
  2020年   318篇
  2019年   433篇
  2018年   488篇
  2017年   345篇
  2016年   385篇
  2015年   408篇
  2014年   557篇
  2013年   695篇
  2012年   972篇
  2011年   1036篇
  2010年   600篇
  2009年   493篇
  2008年   691篇
  2007年   765篇
  2006年   599篇
  2005年   577篇
  2004年   465篇
  2003年   388篇
  2002年   371篇
  2001年   286篇
  2000年   280篇
  1999年   214篇
  1998年   123篇
  1997年   109篇
  1996年   81篇
  1995年   77篇
  1994年   60篇
  1993年   50篇
  1992年   90篇
  1991年   89篇
  1990年   97篇
  1989年   70篇
  1988年   76篇
  1987年   86篇
  1986年   71篇
  1985年   64篇
  1984年   66篇
  1983年   51篇
  1982年   42篇
  1981年   24篇
  1980年   30篇
  1979年   36篇
  1978年   28篇
  1977年   22篇
  1970年   23篇
  1967年   25篇
  1966年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Nonwoven geotextiles are geosynthetic products that are highly susceptible to ultraviolet degradation because light can reach a large area of the material due to its fiber arrangement. Even with additives, which delay the degradation process, material decomposition still occurs, and therefore the product’s long-term durability can be affected. In this paper, the mechanical and thermal behavior of a commercial nonwoven polyester geotextile subjected to accelerated ultraviolet aging tests were evaluated. The deterioration was evaluated by comparing the physical properties (mass per unit area, thickness, and tensile strength) and thermal behavior (thermogravimetry—TG, thermomechanical analysis—TMA, and differential scanning calorimetry—DSC) before and after exposure times of 500 h and 1000 h. The results showed that the ultraviolet aging tests induced some damage in the polyester fibers, leading to the deterioration of their tensile strength. For 1000 h of exposure, in which the reduction was larger, scanning electron microscopy (SEM) found some superficial disruption of the fibers, indicative of damage. TG and DSC could not capture the effects of UV radiation on polymer degradation, unlike TMA. This latter technique was effective in showing the differences between specimens before and after UV exposure.  相似文献   
92.
One of the biggest challenges in microbiome research in environmental and medical samples is to better understand functional properties of microbial community members at a single-cell level. Single-cell isotope probing has become a key tool for this purpose, but the current detection methods for determination of isotope incorporation into single cells do not allow high-throughput analyses. Here, we report on the development of an imaging-based approach termed stimulated Raman scattering–two-photon fluorescence in situ hybridization (SRS-FISH) for high-throughput metabolism and identity analyses of microbial communities with single-cell resolution. SRS-FISH offers an imaging speed of 10 to 100 ms per cell, which is two to three orders of magnitude faster than achievable by state-of-the-art methods. Using this technique, we delineated metabolic responses of 30,000 individual cells to various mucosal sugars in the human gut microbiome via incorporation of deuterium from heavy water as an activity marker. Application of SRS-FISH to investigate the utilization of host-derived nutrients by two major human gut microbiome taxa revealed that response to mucosal sugars tends to be dominated by Bacteroidales, with an unexpected finding that Clostridia can outperform Bacteroidales at foraging fucose. With high sensitivity and speed, SRS-FISH will enable researchers to probe the fine-scale temporal, spatial, and individual activity patterns of microbial cells in complex communities with unprecedented detail.

With the rapid advances in both genotyping and phenotyping of single cells, bridging genotype and phenotype at the single-cell level is becoming a new frontier of science (1). Methods have been developed to shed light on the genotype–metabolism relationship of individual cells in a complex environment (2, 3), which is especially relevant for an in-depth understanding of complex microbial communities in the environment and host-associated microbiomes. For functional analyses of microbial communities, single-cell isotope probing is often performed in combination with nanoscale secondary ion mass spectrometry (NanoSIMS) (47), microautoradiography (MAR) (8, 9), or spontaneous Raman microspectroscopy (1012) to visualize and quantify the incorporation of isotopes from labeled substrates. These methods can be combined with fluorescence in situ hybridization (FISH) using ribosomal ribonucleic acid (rRNA)-targeted probes (13), enabling a direct link between metabolism and identity of the organisms. In addition, Raman-activated cell sorting has been recently developed using either optical tweezers or cell ejection for downstream sequencing of the sorted cells (1416). While these approaches have expanded the possibilities for functional analyses of microbiome members (17), all of the aforementioned methods suffer from extremely limited throughput. Consequently, only relatively few samples and cells per sample are typically analyzed in single-cell stable isotope probing studies, hampering a comprehensive understanding of the function of microbes in their natural environment.To overcome the limited throughput of Raman spectroscopy, coherent Raman scattering microscopy based on coherent anti-Stokes Raman scattering (CARS) or stimulated Raman scattering (SRS) has been developed (18, 19). Compared with CARS, the SRS signal is free of the electronic resonance response (20) and is linear to molecular concentration, thus permitting quantitative mapping of biomolecules (21, 22). Both CARS and SRS microscopy have successfully been applied for studying single-cell metabolism in eukaryotes (2326). In a label-free manner, SRS imaging has led to the discovery of an aberrant cholesteryl ester storage in aggressive cancers (27, 28), lipid-rich protrusions in cancer cells under starvation (29), and fatty acid unsaturation in ovarian cancer stem cells (30) and more recently, in melanoma (31, 32). CARS and SRS have also been harnessed to explore lipid metabolism in live Caenorhabditis elegans (3336). Combined with stable isotope probing, SRS microscopy has allowed the tracing of glucose metabolism in eukaryotic cells (37, 38) and the visualization of metabolic dynamics in living animals (25). Recently, SRS was successfully applied to infer antibiotic resistance patterns of bacterial pure cultures and heavy water (D2O) metabolism (39). Yet, SRS microscopy has not been adapted for studying functional properties of members of microbiomes as SRS itself lacks the capability of identifying cells in a complex community.Here, we present an integrative platform that exploits the advantages of SRS for single-cell stable isotope probing together with two-photon FISH for the identification of cells in a high-throughput manner. To deal with the challenges in detecting low concentrations of metabolites inside small cells with diameters around 1 µm, we have developed a protocol that maximizes the isotope label content in cells and exploits the intense SRS signal from the Raman band used for isotope detection.Conventionally, FISH is performed separately by one-photon excited fluorescence microscopy (40). To enhance efficiency, we developed a system that implements highly sensitive SRS metabolic imaging with two-photon FISH using the same laser source. These efforts collectively led to a high-throughput platform that enables correlative imaging of cell identity and metabolism at a speed of 10 to 100 ms per cell. In comparison, it takes about 20 s to record a Raman spectrum from a single cell in a conventional spontaneous Raman FISH experiment (41, 42).Our technology enabled high-throughput analysis of single-cell metabolism in the human gut microbiome. In the human body, microbes have been shown to modulate the host’s health (43, 44). Analytical techniques looking into their activities and specific physiologies (i.e., phenotype) as a result of both genotype and the environment provide key information on how microbes function, interact with, and shape their host. As a proof of principle, we used stimulated Raman scattering–two-photon fluorescence in situ hybridization (SRS-FISH) to track the incorporation of deuterium (D) from D2O into a mixture of two distinct gut microbiota taxa. Incorporation of D from D2O into newly synthesized cellular components of active cells, such as lipids and proteins, occurs analogously to incorporation of hydrogen from water during the reductive steps of biosynthesis of various cellular molecules (10, 45, 46). Importantly, D incorporation from D2O has been shown to be reliable to track metabolic activity of individual cells within complex microbial communities in response to the addition of external substrates (10, 17, 47). When microbial communities are incubated in the presence of D2O under nutrient-limiting conditions, individual cells display only minimal activity and only minor D incorporation (11, 17, 47). In contrary, when cells are stimulated by the addition of an external nutrient, cells that can metabolize this compound become active and incorporate D into macromolecules, which lead to the presence of C-D bonds into the cell’s biomass. Consequently, D incorporation from D2O can be combined with techniques able to detect C-D signals, such as Raman-based approaches, and to track metabolic activity at the single-cell level in response to a variety of compounds. Here, we show that SRS-FISH enables fast and sensitive determination of the D content of individual cells while simultaneously unveiling their phylogenetic identity. We applied this technique to complex microbial communities by tracking in situ the metabolic responses of two major phylogenetic groups of microbes in the human gut (Bacteroidales and Clostridia spp.) and of a particular species within each group to supplemented host-derived nutrients. Our study revealed that 1) Clostridia spp. can actually outperform Bacteroidales spp. at foraging on the mucosal sugar fucose and shows 2) a significant interindividual variability of responses of these major microbiome taxa toward mucosal sugars. Together, our results demonstrate the capability of SRS-FISH to unveil the metabolism of particular microbes in complex communities at a throughput that is two to three orders of magnitude higher than other metabolism identity bridging tools, therefore providing a valuable multimodal platform to the field of single-cell analysis.  相似文献   
93.
The time course of histological changes was studied in rats lethally intoxicated (150 micrograms/kg) with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In addition to TCDD-caused tissue damage described by others, the thyroid, pancreas, and interscapular brown adipose tissue (IBAT) were identified as tissues affected by TCDD. Because histological changes in the thyroid and pancreas occurred late (7 days after dosing), these effects are viewed as secondary due to altered hormonal homeostases. Both light and electron microscopic examination of IBAT identified this tissue as a target in TCDD toxicity. Histological changes in IBAT are characterized by three phases: (1) "fatty" IBAT (Days 1 to 3 after dosing); (2) fat depletion accompanied by glycogen accumulation (Days 4 to 7 after dosing); and (3) complete fat and glycogen depletion together with massive cellular damage (Days 8 to 14), particularly affecting the mitochondria. It is concluded that brown adipose tissue is a primary target in TCDD toxicity. It seems that destruction of brown adipose tissue by TCDD leads to an energy imbalance resulting in reduced oxygen consumption which forces animals to contribute a greater proportion of energy to the maintenance of their body temperature by anaerobic pathways. It is suggested that this less efficient energy utilization is the cause of a wasting syndrome.  相似文献   
94.
BackgroundThe New York Heart Association (NYHA) functional classification is the most commonly used classification system for heart failure (HF), whereas cardiopulmonary exercise testing (CPET) is the gold standard for functional status evaluation in HF.ObjectiveThis study aimed to analyze correlation and concordance between NYHA classes and CPET variables.MethodsHF patients with clinical indication for CPET and ejection fraction (EF) < 50% were selected. Correlation (Spearman coefficient) and concordance (kappa) between NYHA classification and CPET-based classifications were analyzed. A p < 0.05 was accepted as significant.ResultsIn total, 244 patients were included. Mean age was 56 ± 14 years, and mean EF was 35.5% ± 10%. Distribution of patients according to NYHA classification was 31.2%% class I, 48.3% class II, 19.2% class III, and 1.3% class IV. Correlation (r) between NYHA and Weber classes was 0.489 (p < 0.001), and concordance was 0.231 (p < 0.001). Correlation (r) between NYHA and ventilatory classes (minute ventilation/carbon dioxide production [VE/VCO2] slope) was 0.218 (p < 0.001), and concordance was 0.002 (p = 0.959). Spearman correlation between NYHA and CPET score classes was 0.223 (p = 0.004), and kappa concordance was 0.027 (p = 0.606).ConclusionThere was a moderate association between NYHA and Weber classes, although concordance was low. Ventilatory (VE/VCO2slope) and CPET score classes had a weak association and a low concordance with NYHA classes.  相似文献   
95.
96.
Low-dimensional structures, such as nanotubes, have been the focus of research interest for approximately three decades due to their potential for use in numerous applications in engineering and technology. In addition to extensive investigation of carbon nanotubes, those composed of elements other than carbon, the so-called non-carbon nanotubes, have also begun to be studied, since they can be more suitable for electronic and optical nano-devices than their carbon counterparts. As in the case of carbon nanotubes, theoretical (numerical and analytical) approaches have been established predominantly to study non-carbon nanotubes. So far, most of work has dealt with the investigation of the structural and electrical properties of non-carbon nanotubes, paying less attention to the evaluation of their mechanical properties. As the understanding of the mechanical behaviour of the constituents is fundamental to ensure the effective performance of nanotube-based devices, this overview aims to analyse and systematize the literature results on the elastic properties of inorganic non-carbon nanotubes.  相似文献   
97.
98.
99.
100.
BackgroundThe primary role of infections in chronic urticaria (CU) is controversial. We hypothesised that streptococcal tonsillitis (ST) could be a primary cause of CU or acute recurrent urticaria (ARU).MethodsRetrospective study of 14 outpatients observed between January 2000 and December 2009, with CU/ARU and clinical and/or laboratorial suspicion of an aetiopathogenic link with ST. Clinical history, objective examination and laboratorial study were looked for. Three groups were defined: spontaneous resolution of urticaria, resolution after tonsillectomy, and still symptomatic.ResultsIn these patients, a causal relationship between ST and urticaria is supported by: markers of streptococcal infection, the perception of a clinical relationship between tonsillitis and urticaria, the decrease of urticaria severity with early antibiotherapy to tonsillitis and urticaria resolution after tonsillectomy.ConclusionsOur study encourages the investigation of tonsillitis in these otherwise idiopathic patients, especially until young adulthood and even in the absence of any symptoms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号