首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   1篇
儿科学   1篇
妇产科学   2篇
基础医学   17篇
口腔科学   14篇
临床医学   7篇
内科学   22篇
神经病学   22篇
外科学   28篇
预防医学   1篇
眼科学   1篇
药学   15篇
中国医学   2篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   4篇
  2014年   2篇
  2013年   4篇
  2012年   5篇
  2011年   10篇
  2010年   6篇
  2009年   8篇
  2008年   8篇
  2007年   21篇
  2006年   20篇
  2005年   17篇
  2004年   5篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1993年   2篇
  1979年   1篇
排序方式: 共有132条查询结果,搜索用时 48 毫秒
31.
Eighteen carbapenem-resistant, OXA-48-positive enterobacterial isolates recovered from Turkey, Lebanon, Egypt, France, and Belgium were analyzed. In most isolates, similar 70-kb plasmids carrying the carbapenemase gene blaOXA-48 were identified. That gene was located within either transposon Tn1999 or transposon Tn1999.2, which was always inserted within the same gene. This work highlights the current plasmid-mediated dissemination of the OXA-48 carbapenemase worldwide.Carbapenem-hydrolyzing β-lactamases belonging to Ambler classes A, B, and D have been reported worldwide among Enterobacteriaceae (22). The extensive spread of Ambler class A carbapenemases of the KPC type highlights that carbapenemases may rapidly become threatening (17). Acquired class D ß-lactamases possessing carbapenemase properties have been reported previously, being identified mainly in Acinetobacter sp. (18, 21) and occasionally in Enterobacteriaceae. The chromosome-encoded oxacillinase OXA-23 was previously described for Proteus mirabilis (4), and the oxacillinase OXA-48 was first identified in a Klebsiella pneumoniae isolate from Turkey (20). Since then, several other OXA-48-producing isolates of various enterobacterial species (Citrobacter freundii and Escherichia coli) have been reported, mainly from Turkey (1, 6, 11, 16) but also from Belgium (8), from Lebanon (15), and more recently from the United Kingdom (14, 23a), India (3a), and Argentina (6a). So far, the blaOXA-48 gene has been found to be plasmid borne and located between two identical insertion sequences, IS1999, forming the composite transposon Tn1999 (3). We have analyzed here the genetic backgrounds associated with the blaOXA-48 gene among Enterobacteriaceae isolates collected from different countries.The study included 18 OXA-48-positive clinical isolates of K. pneumoniae (13 isolates), Enterobacter cloacae (2 isolates), Providencia rettgeri (1 isolate), C. freundii (1 isolate), and E. coli (1 isolate). Isolates were mainly from the Turkish cities Istanbul, Ankara, and Izmir (n = 14) (Table (Table1).1). Among the 13 K. pneumoniae isolates, at least Kp11978 (20) and KpB had been sources of nosocomial outbreaks (6). A single K. pneumoniae isolate (KpBEL) was recovered from Brussels, Belgium (8); another K. pneumoniae isolate (KpL) from Beirut, Lebanon (15); another K. pneumoniae isolate from the Bicêtre Hospital (KpBIC), Paris, France (this study); and another K. pneumoniae isolate from Gizah, Egypt (KpE) (8a). Samples were isolated from blood (KpI1, KpI2, KpB, and Enc1), urine (PR, KpBEL, KpL, Kp11978, and KpBIC), cerebrospinal fluid (Enc2), and catheter (KpE). Isolates from Belgium, France, Egypt, and Lebanon were from patients who did not report recent travel history.

TABLE 1.

MICs of β-lactams for the 18 isolates of Enterobacteriaceae and their transconjugants and/or transformants (pOXA-48) E. coli J53 and E. coli TOP10
β-Lactam(s)aMIC (μg/ml) of β-lactam forb:
MIC (μg/ml) of β-lactam forb:
Kp11978 (Istanbul; OXA-48, SHV-2a, TEM-1)E. coli J53(pA-1)KpB (Istanbul; OXA-48, CTX-M-15)E. coli J53(pBb)Kp3A (Ankara; OXA-48)E. coli J53(p3A)Kp4A (Ankara; OXA-48, CTX- M-15), Kp5A (Ankara; OXA-48, SHV-5), Kp6A (Ankara; OXA-48, TEM-150)E. coli J53(p4A, p5A, p6A)Kp7A (Ankara; OXA-48)E. coli J53(p7A)KpI-1 and KpI-2 (Izmir; OXA- 48, CTX-M-15)E. coli J53(pI-1, pI-2)KpBIC (Paris; OXA-48)E. coli TOP10(pBIC)KpE (Gizah; OXA-48, CTX-M-15)E. coli J53(pE)KpBEL (Brussels; OXA-48)E. coli J53(pBEL)KpL (Beirut; OXA-48)E. coli J53(pL)PR (Izmir; OXA-48, TEM-101)E. coli TOP10(pPR)Enc1 (Istanbul; OXA-48, SHV-5)E. coli J53(pEnc1)Enc2 (Istanbul; OXA-48, SHV-2a)E. coli J53(pEnc2)CF (Istanbul; OXA-48, VEB-1)E. coli J53(pCF)EcA (Ankara; OXA-48, TEM-150)E. coli J53(pEcA)E. coli J53E. coli TOP10
Imipenem642160.5>320.75>320.38>320.75240.50.50.5220.750.75>164>321.50.50.50.750.75>320.75240.750.060.06
Ertapenem640.19>320.25>320.25>320.12>320.19240.2520.53342>164>320.750.50.1250.750.19>320.25>320.250.060.06
Meropenem640.25320.12>320.12>320.094>320.12160.0940.50.5220.50.5>160,19>320.250.50.0940.750.12>320.12240.190.060.06
Amoxicillin>512>512>512>512>512>512>512>512>512>512>512>512>512>512>512>512>256>256>256>256>256>256>512>512>512>512>512>512>256>25644
Amoxicillin + clav. acid>512128>512>512>512>512>512>512>512>512>512>512>512>512>512>512>256>256>256>256>256>256>512>512>512>512>512>512>256>25644
Ticarcillin>512>512>512>512>512>512>512>512>512>512>512>512>512>512>512>512>256>256>256>256>256>256>512>512>512>512>512>512>256>25624
Ticarcillin + clav. acid>512128>512>512>512>512>512>512>512>512>512>512>512>512>512>512>256>256>256>256>256>256>512>512>512>512>512>512>256>25624
Piperacillin>5128>512>512>512512>512>512>512>512>512512>512>512>512512>2561289664>256128>512>512>512>512>512>512>25612812
Piperacillin + tazobactam5124>512>512>512512>512>512>512>512>512512>512>512>512512>2561289664>256128>512>512>512>512>512>512>25612812
Cephalotin>5120.5>51216>51216>51216>51216>51216>51216>512161616328>51216>51216>51216>512>512>5121644
Cefotaxime640.06>5120.510.5640.120.50.5640.120.50.5640.120.120.121.50.256432>5120.255120.25640.12640.120.060.06
Ceftazidime5120.12>51210.250.255120.120.120.125120.120.120.125120.1210.750.750.75512512>5120.75320.755120.755120.750.060.06
Cefepime320.06>512<0.50.50.12320.120.50.5320.120.50.5320.120.120.120.120.06320.540.12320.12320.12320.120.030.06
Aztreonam5120.06>512<0.120.060.065120.060.060.065120.060.060.065120.060.060.060.060.065120.06>5120.065120.065120.065120.060.030.06
Cefoxitin12821284221282128212821282128222821284>512251221282128224
Open in a separate windowaclav. acid, clavulanic acid.bKp, K. pneumoniae; Enc, E. cloacae; CF, C. freundii; PR, P. rettgeri; Ec, E. coli.Antibiotic susceptibility of the isolates was determined by the disk diffusion method (7). MICs of β-lactams were determined using Etest strips (AB bioMérieux, Solna, Sweden). All isolates were resistant to penicillins. Fourteen of the 18 isolates were resistant to carbapenems according to the CLSI guidelines (Table (Table1)1) (7). The four remaining isolates (KpBIC, KpE, Enc1, and Enc2) exhibited MICs of carbapenems remaining in the intermediate or in the susceptible range. Resistance to broad-spectrum cephalosporins was observed for most of the isolates. However, isolates Kp3A, Kp7A, KpBEL, KpL, and KpBIC remained susceptible to broad-spectrum cephalosporins (Table (Table1).1). All isolates were resistant to fluoroquinolones, except isolates Kp6A, Enc1, and Enc2. All isolates were resistant to aminoglycosides and sulfamethoxazole, except isolate CF, which remained susceptible to the latter antibiotic.Carbapenemase- and extended-spectrum-β-lactamase (ESBL)-encoding genes were identified by PCR experiments using previously designed primers (6, 8), followed by sequencing. Additional ESBL production was detected by synergy tests as described previously (12). Positive results for ESBL production were observed for isolates EcA, Enc1, Enc2, Kp4A, Kp5A, Kp6A, KpI-1, KpI-2, and KpE. Several ESBL determinants were identified, including CTX-M-15, SHV-5, SHV-2a, TEM-101, TEM-150, and VEB-1 (Table (Table11).Isolates belonging to the same species (13 K. pneumoniae isolates or two E. cloacae isolates) were compared by pulsed-field gel electrophoresis (PFGE) as described previously (6). Ten pulsotypes were identified among the 13 K. pneumoniae isolates. The two K. pneumoniae isolates from Izmir were clonally related, and the three K. pneumoniae isolates from Ankara (Kp4A, Kp5A, and Kp6A) shared very similar PFGE patterns. The two E. cloacae isolates recovered from Istanbul were not clonally related (Fig. (Fig.11).Open in a separate windowFIG. 1.Pulsed-field gel electrophoresis patterns of the 13 OXA-48-producing K. pneumoniae isolates and the two OXA-48-producing E. cloacae isolates. (A) Lane 1, Kp3A; lane 2, Kp4A; lane 3, Kp5A; lane 4, Kp6A; lane 5, Kp7A; lane 6, KpI-1; lane 7, KpI-2; lane 8, unrelated K. pneumoniae isolate (included as a comparative strain); lane 9, Enc1; lane 10, Enc2; lane 11, unrelated E. cloacae isolate (included as a comparative strain); lane M, molecular size marker. (B) Lane 1, Kp3A; lane 2, Kp11978; lane 3, Kp4A; lane 4, Kp7A; lane 5, KpI-1; lane 6, KpL; lane 7, KpB; lane 8, KpBEL; lane 9, KpE; lane 10, KpBIC; lane M, molecular size marker.Transferability of the blaOXA-48 gene was studied by conjugation experiments as described previously (6). When conjugation experiments failed, plasmid DNA extract was used for transformation as described previously (20). Transformants were selected on LB agar containing ticarcillin (50 μg/ml). Transconjugants and transformants with decreased susceptibility to carbapenems were obtained for all isolates (Table (Table1),1), and MICs for the transconjugants/transformants remained in the susceptible range. The E. coli transformant obtained from the P. rettgeri isolate exhibited reduced susceptibility to carbapenems associated with resistance to cefotaxime and ceftazidime.Plasmids were analyzed by using the Kieser technique (13). A 70-kb plasmid was identified in all transconjugants/transformants (data not shown). However, a 150-kb plasmid was identified in the blaOXA-48-positive transformant obtained with the PR isolate. The blaOXA-48 and blaTEM-101 genes were codetected on the same 150-kb plasmid, as confirmed by Southern blot hybridization as described previously (20) (data not shown), explaining the resistance to all β-lactams of the PR isolate and its transformant (Table (Table1).1). Plasmid restriction profiles were compared as described previously (10) (data not shown), and very similar restriction patterns (suggesting highly related structures) were obtained for all of the 70-kb plasmids but not for the 150-kb plasmid pPR.PCR mapping was used to assess the presence of insertion sequence IS1999 upstream of the blaOXA-48 gene, to confirm the presence of transposon Tn1999, and to identify the transposon insertion site for all of the OXA-48-positive isolates (3, 20). In all isolates, the blaOXA-48 gene was flanked by two copies of IS1999, as described previously (3). The prototype IS1999 located at the left extremity of transposon Tn1999 was identified in isolates Kp3A, Kp4A, Kp5A, Kp6A, Kp7A, CF, PR, Enc1, and Enc2. Insertion of IS1R into IS1999 as described for KpB (6) and giving rise to Tn1999.2 was identified for isolates EcA, KpBIC, KpI, KpL, KpBEL, and KpE (Fig. (Fig.2).2). In isolate Kp11978, transposon Tn1999 had been identified to be inserted into the tir gene, being functionally homologous to the F3 gene encoding the factor F involved in the plasmid replicative machinery (23). By use of a primer located upstream of Tn1999 inserted into the tir gene, insertion of Tn1999 at the same target site was evidenced in all of the blaOXA-48-positive plasmids except for the pPR plasmid (Fig. (Fig.2).2). Inverse PCR performed as described previously (3) was used for identifying the blaOXA-48-surrounding structures in isolate PR. Sequencing of the obtained amplicons indicated that Tn1999 had targeted a gene encoding a phosphoadenosine phosphosulfate reductase (ΔPPR).Open in a separate windowFIG. 2.Genetic environments of the blaOXA-48-carrying plasmids identified among the 18 OXA-48-positive Enterobacteriaceae isolates. (A) Structure described for pA-1, p3A, p4A, p5A, p6A, p7A, pCF, pEnc1, and pEnc2. (B) Structure of the 150-kb pPR plasmid. (C) Structure described for pBb, pI, pL, pBEL, pEcA, pBIC, and pE.Attempts to identify the incompatibility group of the 70-kb OXA-48-positive plasmids failed using a PCR-based replicon typing method as described previously (5). Since rep genes are often located close to the hot spots for resistance gene integration, cloning experiments were performed to study these plasmids further. A gene encoding phage replication protein P (RepP) was identified upstream of the blaOXA-48 gene. Primers specific for the repP gene were designed (RepPA, 5′-AATGGTTAACTTTGACTGTG-3′; RepPB, 5′-GCACGATTTAGAGGTCTAC-3′), and positive results were obtained for all 70-kb plasmids. Association of the repP gene with the blaOXA-48 gene on the 70-kb plasmid was confirmed by hybridization with a specific RepP probe (data not shown). However, the repP gene could not be detected on the 150-kb plasmid identified from isolate PR. Our study showed the spread of a blaOXA-48-carrying plasmid among different enterobacterial species, being identified first in Turkey and later in other European countries and in the Middle East. The present work indicates that dissemination of the blaOXA-48 gene is not driven by the dissemination of a single K. pneumoniae clone. Since the blaOXA-48-carrying plasmid confers by itself a low level of resistance to carbapenems, clinical laboratory detection of OXA-48-producing strains may be difficult. Since the reservoir of blaOXA-48 has been identified in the waterborne Gram-negative organism Shewanella oneidensis (19), it is likely that the process leading to the dissemination of this gene may be the consequence of a wide interspecies exchange. In addition, since plasmids belonging to the RepP group have been described among Pseudomonas sp., phytopathogenic Xanthomonas sp., and samples from soils and sludges (2, 9, 24), it may be hypothesized that the blaOXA-48 gene could also be identified in those species. This work underlines that besides class B (VIM and IMP) and class A (KPC) carbapenemases, the class D carbapenemase OXA-48 type might contribute significantly to carbapenem resistance in Enterobacteriaceae.  相似文献   
32.
This study was designed to determine the possible protective effect of grape seed extract (GSE), a widely used antioxidant dietary supplement, on hepatic ischemia/reperfusion (I/R) injury. Wistar albino rats were subjected to 45 min of hepatic ischemia, followed by a 60 min reperfusion period. GSE was administered in a dose of 50 mg/kg/day orally for 15 days before I/R injury and repeated before the reperfusion period. Liver samples were taken for histological examination or determination of hepatic malondialdehyde (MDA), glutathione (GSH) and myeloperoxidase (MPO) activity. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were determined to assess liver functions. Lactate dehydrogenase (LDH) and cytokines (TNF-alpha and IL-1 beta) were also assayed in serum samples for the evaluation of generalized tissue damage. Ischemia/reperfusion caused a significant decrease in hepatic GSH, and significant increases in MDA level, and MPO activity. Serum AST and ALT levels, as well as LDH activity and plasma TNF-alpha and IL-1beta levels were also elevated in the I/R group. Treatment with GSE reversed all these biochemical parameters as well as histological alterations induced by I/R. In conclusion, GSE reduced I/R-induced organ injury through its ability to balance the oxidant-antioxidant status, to inhibit neutrophil infiltration and to regulate the release of inflammatory mediators.  相似文献   
33.
OBJECTIVES: We investigated the role of stage of disease, motor status and dopaminergic treatment in cognitive impairment of Parkinson's disease (PD) patients with visual hallucination (VH) and the presence of specific cognitive impairment patterns. METHOD: We compared 33 PD patients with VH (group 1) with 30 PD patients without VH (group 2) with regard to demographic characteristics and neuropsychological test scores. RESULTS: The group with VH demonstrated significantly worse Short Test of Mental Status scores; the cognitive impairment pattern presented in the form of frontal dysfunction and memory deterioration. There were significant differences in Stroop duration/error, verbal fluency, Wechsler Memory Scale and Sozel Bellek Surecleri Test (a Turkish verbal learning test) scores. CONCLUSION: In PD patients with VH the main pattern of cognitive impairment is frontal dysfunction and memory deterioration. Because visual perceptive functions were not different between the two groups, such deterioration may not be a primary factor in the development of VH.  相似文献   
34.
We investigated the role of melatonin on water avoidance stress (WAS)-induced degeneration of the gastric, ileal and colonic mucosa. Wistar albino rats were exposed to acute WAS (aWAS group) or chronic WAS (cWAS group). Before exposing animals to acute (aWAS + mel group) or chronic WAS (cWAS + mel group), 10 mg/kg melatonin was injected i.p. The stomach, ileum and colon samples were investigated under light and scanning electron microscope. Malondialdehyde (MDA) and glutathione (GSH) levels were also determined. In both aWAS and cWAS groups, the epithelium of stomach showed ulceration in some areas, dilatations of the gastric glands and degeneration of gastric glandular cells; prominent congestion of the capillaries after WAS was apparent. In the cWAS group, severe vascular congestion was observed along with degeneration of ileal and colonic epithelium. MDA levels were increased and GSH levels were decreased in all tissues in both the aWAS and cWAS groups. The morphology of gastric, ileal and colonic mucosa in both aWAS + mel and cWAS + mel groups showed that the indole significantly reduced degeneration of the gastrointestinal mucosa. Decreased MDA and increased GSH levels were observed in the WAS + mel groups. Based on the results, melatonin treatment significantly prevented WAS induced degenerative morphological and biochemical changes of gastrointestinal mucosa.  相似文献   
35.
The aim of this study was to investigate the effects of melatonin as an antioxidant, on prevention and treatment of streptozotocin (STZ)-induced diabetic renal injury in rats. Male Wistar rats were divided into four groups: (1) untreated, (2) melatonin-treated, (3) untreated diabetic (UD), (4) melatonin-treated diabetic (MD). Experimental diabetes was induced by single dose (60 mg/kg, i.p.) STZ injection. For 3 days prior to administration of STZ, melatonin was injected (200 microg/kg/day, i.p.); these injections were continued until the end of the study (4 weeks). Malondialdehyde (MDA) levels as a marker of lipid peroxidation were significantly increased in the renal homogenates of UD animals and decreased after melatonin administration. The activity of the antioxidative enzyme glutathione peroxidase (GSH-Px) was significantly reduced in UD rats. Melatonin treatment reversed STZ-induced reduction of GSH-Px activity without having an effect on blood glucose. Upon histopathological examination, it was observed that the melatonin treatment prevented the renal morphological damage caused by diabetes. Upon immunohistochemical investigation, glomerular anti-laminin beta1 staining decreased in MD rats. Additionally, no tubular anti-IGF-1 staining was observed in melatonin-treated rats. In conclusion, chronically administered melatonin reduced renal injury in STZ-induced diabetic rats and thus it may provide a useful therapeutic option in humans to reduce oxidative stress and the associated renal injury in patients with diabetes mellitus.  相似文献   
36.
To evaluate the effect of halofuginone on trinitrobenzene sulfonic acid (TNBS)-induced colonic injury, rats were given halofuginone (40 μg/kg, intraperitoneally) or saline 1 h before the induction of colitis, and the injections were continued twice daily for 3 days until they were decapitated. High macroscopic and microscopic damage scores, elevated colonic wet weights, colonic myeloperoxidase activity, malondialdehyde and tissue collagen level, and luminol chemiluminescence values, and marked reduction in glutathione level of the saline-treated colitis group were all reversed by treatment with halofuginone. In conclusion, halofuginone exerts beneficial effects in TNBS-induced colonic inflammation in rats. The anti-inflammatory effects of halofuginone appear to involve suppression of neutrophil accumulation, preservation of endogenous glutathione, and inhibition of reactive oxidant generation. Halofuginone also shows antifibrotic effect via inhibition of tissue collagen production. The present data encourage possible use of the antifibrotic halofuginone as an anti-inflammatory agent in improving oxidative injury in colitis.  相似文献   
37.
The present study aimed to investigate the possible beneficial effects of the cysteinyl leukotriene-1 receptor antagonist montelukast on contractility and oxidant damage after ischaemia/reperfusion (I/R) of rat urinary bladder. The abdominal aorta of Sprague-Dawley rats was occluded to induce I/R. Montelukast (10 mg kg(-1)) or saline was administered intraperitoneally before I/R. In the sham-operated group, the abdominal aorta was left intact and the animals were treated with montelukast or saline. After decapitation, the bladder was removed and the tissue was either used for functional studies or stored for biochemical assays. In the I/R group, the isometric contractile responses of the bladder strips to carbachol (10(-8)-10(-4) M) were lower than those of the control group and were reversed by treatment with montelukast. Lipid peroxidation and myeloperoxidase activity of the bladder tissues in the I/R group were greater than in the sham-operated group. Montelukast treatment in the I/R group decreased these parameters compared with I/R alone. Similarly, the significant decrease in tissue glutathione level in the I/R group compared with controls was also prevented by montelukast. Treatment with montelukast almost completely reversed the low contractile responses of rat urinary bladder to carbachol and prevented oxidative tissue damage following I/R.  相似文献   
38.
BACKGROUND AND AIM: To evaluate the protective effect of alpha-lipoic acid in reducing oxidative damage after severe hepatic ischemia/reperfusion (IR) injury. METHODS: Wistar albino rats were subjected to 45 min of hepatic ischemia, followed by 60 min reperfusion period. Lipoic acid (100 mg/kg i.p.) was administered 15 min prior to ischemia and immediately before reperfusion period. At the end of the reperfusion period aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) activity, and cytokine, TNF-alpha and IL-1beta levels were determined in serum samples. Malondialdehyde (MDA), and glutathione (GSH) levels and myeloperoxidase (MPO) activity were determined in the liver tissue samples while formation of reactive oxygen species was monitored by using chemiluminescence (CL) technique with luminol and lucigenin probes. Tissues were also analyzed histologically. Results: Serum ALT, AST, and LDH activities and TNF-alpha and IL-1beta levels were elevated in the I/R group, while this increase was significantly lower in the group of animals treated concomitantly with lipoic acid. Hepatic GSH levels, significantly depressed by I/R, were elevated back to control levels in lipoic acid-treated I/R group. Furthermore, increases in tissue luminol and lucigenin CL, MDA levels and MPO activity due to I/R injury were reduced back to control levels with lipoic acid treatment. CONCLUSION: Since lipoic acid administration alleviated the I/R-induced liver injury and improved the hepatic structure and function, it seems likely that lipoic acid with its antioxidant and oxidant-scavenging properties may be of potential therapeutic value in protecting the liver against oxidative injury due to ischemia-reperfusion.  相似文献   
39.
This study focused on the synthesis and characterization of poly(ethylene glycol)-poly(D,L-lactide-co-glycolide)-poly(ethylene glycol) tri-block co-polymer (PEG-PDLLG-PEG), and its modification with type-I collagen. To this aim, a PEG-PDLLG-PEG tri-block co-polymer was synthesized in two steps by reacting poly(ethylene glycol)bis(carboxymethyl)ether with thionyl chloride to obtain an acyl-halide-terminated poly(ethylene glycol) and subsequently coupling this compound to hydroxyl-terminated poly(D,L-lactide-co-glycolide) (PDLLG). The new carboxyl endgroups of PEG-PDLLG-PEG were subsequently reacted with N-hydroxysuccinimide (NHS) in the presence of the hetero-bifunctional cross-linking agent dicyclohexylcarbodiimide (DCC) in order to activate the co-polymer for coupling with collagen. PEG-PDLLG-PEG and its activated form PEG-PDLLG-NHS were characterized by Fourier transform infrared (FT-IR) and 1H-NMR spectroscopy. Molecular weights of the polymeric products were determined by SEC. Type-I collagen in phosphate buffer was reacted with PEG-PDLLG-NHS. The resultant product, PEG-PDLLG-Col, was characterized by FT-IR. This biopolymer was used for preparation of a suitable surface for cell growth experiment. To measure the degree of cell proliferation, the films prepared with PDLLG, PEG-PDLLG-NHS and PEG-PDLLG-Col were seeded with L929 mouse fibroblasts. Cell growth was followed by SEM photography and quantitated by the neutral red uptake assay. It was shown that the attachment of collagen significantly increased the number of cells on the co-polymers.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号