首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   892篇
  免费   44篇
耳鼻咽喉   8篇
儿科学   43篇
妇产科学   7篇
基础医学   136篇
口腔科学   13篇
临床医学   120篇
内科学   179篇
皮肤病学   5篇
神经病学   141篇
特种医学   14篇
外科学   72篇
综合类   9篇
一般理论   1篇
预防医学   112篇
眼科学   14篇
药学   33篇
中国医学   1篇
肿瘤学   28篇
  2023年   9篇
  2022年   9篇
  2021年   30篇
  2020年   16篇
  2019年   34篇
  2018年   50篇
  2017年   32篇
  2016年   26篇
  2015年   23篇
  2014年   41篇
  2013年   54篇
  2012年   72篇
  2011年   65篇
  2010年   46篇
  2009年   34篇
  2008年   72篇
  2007年   63篇
  2006年   65篇
  2005年   46篇
  2004年   52篇
  2003年   21篇
  2002年   39篇
  2001年   5篇
  2000年   5篇
  1999年   6篇
  1998年   6篇
  1997年   7篇
  1996年   4篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
排序方式: 共有936条查询结果,搜索用时 31 毫秒
31.
Stroke is the leading cause of adult disability and the fourth most common cause of death in the United States. Inflammation is thought to play an important role in stroke pathology, but the factors that promote inflammation in this setting remain to be fully defined. An understudied but important factor is the role of meningeal-located immune cells in modulating brain pathology. Although different immune cells traffic through meningeal vessels en route to the brain, mature mast cells do not circulate but are resident in the meninges. With the use of genetic and cell transfer approaches in mice, we identified evidence that meningeal mast cells can importantly contribute to the key features of stroke pathology, including infiltration of granulocytes and activated macrophages, brain swelling, and infarct size. We also obtained evidence that two mast cell-derived products, interleukin-6 and, to a lesser extent, chemokine (C-C motif) ligand 7, can contribute to stroke pathology. These findings indicate a novel role for mast cells in the meninges, the membranes that envelop the brain, as potential gatekeepers for modulating brain inflammation and pathology after stroke.Stroke, the leading cause of adult disability and the fourth most common cause of death in the Unites States,1,2 occurs when there is insufficient blood flow to the brain, and the resultant injury initiates a cascade of inflammatory events, including immune cell infiltration into the brain.3–5 This post-stroke inflammation is a critical determinant of damage and recovery after stroke; understanding the interplay between the immune system and the brain after stroke holds much promise for therapeutic intervention.4–7 However, successfully exploiting this therapeutic potential requires a detailed understanding of the interplay between the immune system and the brain after stroke.4An understudied but important aspect of this interplay is the role of meningeal-located immune cells in modulating brain pathology. The meninges have long been recognized as an anatomical barrier that protects the central nervous system (CNS). However, accumulating evidence suggests that the meninges are important for communication between the CNS and immune system during health and disease.8–10 All blood vessels pass through the meningeal subarachnoid space before entering the brain, and this vascular connection and the close proximity of the meninges to the underlying parenchymal nervous tissue make them ideally located to act as a gatekeeper to modulate immune cell trafficking to the CNS. To support this gatekeeper function is evidence that the meninges modulate brain infiltration of T cells, neutrophils, and monocytes during meningitis and autoimmune conditions,11–14 with immune cells observed in some instances accumulating in the meninges before they infiltrate into the parenchyma.11,13Emerging evidence suggests that the actions of immune cells resident in the meninges are important for this gatekeeper function.11,12,15 Mast cells (MCs), best known as proinflammatory effector cells, can play critical roles in the development of inflammation in many disease settings.16–18 MCs reside in high numbers within the meninges, but their function in this site has not been fully investigated in stroke pathology. Unlike most immune cells, mature MCs do not circulate in the blood but are long-term residents of tissues, often in perivascular locations, and can rapidly perform their functions in situ. CNS MCs are found in the brain parenchyma and the meninges of rodents and humans.18 It has been proposed that brain parenchymal MCs can enhance brain neutrophil numbers after stroke and can exacerbate stroke pathology.19–24 However, much of the evidence to support such conclusions is indirect. For example, some of the studies that implicate MCs in stroke pathology used pharmacologic approaches to interfere with MC activation,19,20,22 but such drugs can have effects on other cell types.25 Moreover, the role of the meningeal MCs in modulating post-stroke inflammation and pathology is unknown. Finally, little is understood about which among the many MC-derived mediators may be important in stroke pathology.17,26To address these questions, we used genetic and cell transfer approaches to study the role of MCs in the pathology of ischemic stroke in mice. Specifically, we tested a c-kit–mutant mouse model (ie, WBB6F1-KitW/W-v mice) which is profoundly MC deficient and can be repaired of this deficiency by engraftment of in vitro-derived MCs from wild-type (WT) mice. This MC knock-in approach enables the MC-dependent effects in the mutant mice to be separated from effects due to other abnormalities associated with their mutation,11,17,26,27 because only the MC deficiency is repaired by MC engraftment. Furthermore, one can investigate the mechanisms by which MCs influence stroke pathology by engrafting MCs from transgenic mice that lack specific MC-associated products. We also tested our newly described Cpa3-Cre; Mcl-1fl/fl mice, in which MC (and basophil) numbers are reduced constitutively via Cre-mediated depletion of the anti-apoptotic factor, myeloid cell leukemia sequence 1 (Mcl-1), in the affected lineages.28 Cpa3-Cre; Mcl-1fl/fl mice lack the other abnormalities associated with the c-kit mutations in WBB6F1-KitW/W-v mice.28With the use of these in vivo models, we identified meningeal MCs as important contributors to key features of stroke pathology, including increased numbers of brain granulocytes and activated macrophages, brain swelling, and infarct size. We also obtained evidence that two potentially proinflammatory MC-derived products, IL-6 and, to a lesser extent, chemokine (C-C motif) ligand 7 (CCL7), can contribute to pathology in this setting.  相似文献   
32.
33.
34.
The interaction of macrophages with infectious agents leads to the activation of several signaling cascades, including mitogen-activated protein (MAP) kinases, such as p38. We now demonstrate that p38 MAP kinase-mediated responses are critical components to the immune response to Borrelia burgdorferi. The pharmacological and genetic inhibition of p38 MAP kinase activity during infection with the spirochete results in increased carditis. In transgenic mice that express a dominant negative form of p38 MAP kinase specifically in macrophages, production of the invariant natural killer T (iNKT) cell-attracting chemokine MCP-1 and of the antigen-presenting molecule CD1d are significantly reduced. The expression of the transgene therefore results in the deficient infiltration of iNKT cells, their decreased activation, and a diminished production of interferon γ (IFN-γ), leading to increased bacterial burdens and inflammation. These results show that p38 MAP kinase provides critical checkpoints for the protective immune response to the spirochete during infection of the heart.  相似文献   
35.
It has been shown in adults that individual differences in intelligence are related to the integrity of the interaction between parietal and frontal brain regions. Since connectivity between distant brain regions strengthens during childhood, it is unclear when in the course of development this relationship emerges. Thus, the goal of this study was to determine whether parietal‐frontal functional connectivity is associated with intelligence in young children. We performed independent component analyses on resting‐state fMRI data of 115 children (6–8 years old) to select seed and target regions for a seed/target region correlation analysis. We found that higher nonverbal intelligence was associated with increased functional connectivity between right parietal and right frontal regions, and between right parietal and dorsal anterior cingulate regions. The association between intelligence and functional connectivity between certain brain regions was stronger in girls than boys. In conclusion, we found that connectivity between the parietal and frontal lobes is critically involved in intelligence in young children. Hum Brain Mapp 34:3299–3307, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
36.
Identification of prevalent infection by hepatitis C virus (HCV) is based serologically on detecting anti-HCV immunoglobulin G, using immunoassays, immunoblot assays, and, more recently, immunochromatography-based rapid tests. None discriminate between active and resolved HCV infection. Tests for detecting HCV RNA identify active HCV infection but are costly. Serologic assays for HCV antigens have been developed and show potential for diagnosis of active HCV infection, and their performance characteristics are undergoing evaluation. The diagnosis of acute HCV infection without the demonstration of seroconversion remains elusive.  相似文献   
37.
Omega‐3 (n‐3) and omega‐6 (n‐6) polyunsaturated fatty acids (PUFA) in red blood cells (RBCs) are an objective indicator of PUFA status and may be related to hip fracture risk. The primary objective of this study was to examine RBC PUFAs as predictors of hip fracture risk in postmenopausal women. A nested case‐control study (n = 400 pairs) was completed within the Women's Health Initiative (WHI) using 201 incident hip fracture cases from the Bone Mineral Density (BMD) cohort, along with 199 additional incident hip fracture cases randomly selected from the WHI Observational Study. Cases were 1:1 matched on age, race, and hormone use with non–hip fracture controls. Stored baseline RBCs were analyzed for fatty acids using gas chromatography. After removing degraded samples, 324 matched pairs were included in statistical analyses. Stratified Cox proportional hazard models were constructed according to case‐control pair status; risk of fracture was estimated for tertiles of RBC PUFA. In adjusted hazard models, lower hip fracture risk was associated with higher RBC α‐linolenic acid (tertile 3 [T3] hazard ratio [HR]: 0.44; 95% confidence interval [CI], 0.23–0.85; p for linear trend 0.0154), eicosapentaenoic acid (T3 HR: 0.46; 95% CI, 0.24–0.87; p for linear trend 0.0181), and total n‐3 PUFAs (T3 HR: 0.55; 95% CI, 0.30–1.01; p for linear trend 0.0492). Conversely, hip fracture nearly doubled with the highest RBC n‐6/n‐3 ratio (T3 HR: 1.96; 95% CI, 1.03–3.70; p for linear trend 0.0399). RBC PUFAs were not associated with BMD. RBC PUFAs were indicative of dietary intake of marine n‐3 PUFAs (Spearman's rho = 0.45, p < 0.0001), total n‐6 PUFAs (rho = 0.17, p < 0.0001) and linoleic acid (rho = 0.09, p < 0.05). These results suggest that higher RBC α‐linolenic acid, as well as eicosapentaenoic acid and total n‐3 PUFAs, may predict lower hip fracture risk. Contrastingly, a higher RBC n‐6/n‐3 ratio may predict higher hip fracture risk in postmenopausal women. © 2013 American Society for Bone and Mineral Research.  相似文献   
38.
There is considerable evidence implicating brain white matter (WM) abnormalities in the pathophysiology of schizophrenia; however, the spatial localization of WM abnormalities reported in the existing studies is heterogeneous. Thus, the goal of this study was to quantify the spatial characteristics of WM abnormalities in schizophrenia. One hundred and fourteen patients with schizophrenia and 138 matched controls participated in this multisite study involving the Universities of Iowa, Minnesota, and New Mexico, and the Massachusetts General Hospital. We measured fractional anisotropy (FA) in brain WM regions extracted using 3 different image-processing algorithms: regions of interest, tract-based spatial statistics, and the pothole approach. We found that FA was significantly lower in patients using each of the 3 image-processing algorithms. The region-of-interest approach showed multiple regions with lower FA in patients with schizophrenia, with overlap at all 4 sites in the corpus callosum and posterior thalamic radiation. The tract-based spatial statistic approach showed (1) global differences in 3 of the 4 cohorts and (2) lower frontal FA at the Iowa site. Finally, the pothole approach showed a significantly greater number of WM potholes in patients compared to controls at each of the 4 sites. In conclusion, the spatial characteristics of WM abnormalities in schizophrenia reflect a combination of a global low-level decrease in FA, suggesting a diffuse process, coupled with widely dispersed focal reductions in FA that vary spatially among individuals (ie, potholes).Key words: diffusion tensor imaging, fractional anisotropy, pothole, tract-based spatial statistics  相似文献   
39.
We conducted a systematic review of studies that involved iPods®, iPads®, and related devices (e.g., iPhones®) in teaching programs for individuals with developmental disabilities. The search yielded 15 studies covering five domains: (a) academic, (b) communication, (c) employment, (d) leisure, and (e) transitioning across school settings. The 15 studies reported outcomes for 47 participants, who ranged from 4 to 27 years of age and had a diagnosis of autism spectrum disorder (ASD) and/or intellectual disability. Most studies involved the use of iPods® or iPads® and aimed to either (a) deliver instructional prompts via the iPod Touch® or iPad®, or (b) teach the person to operate an iPod Touch® or iPad® to access preferred stimuli. The latter also included operating an iPod Touch® or an iPad® as a speech-generating device (SGD) to request preferred stimuli. The results of these 15 studies were largely positive, suggesting that iPods®, iPod Touch®, iPads®, and related devices are viable technological aids for individuals with developmental disabilities.  相似文献   
40.
Child Psychiatry & Human Development - Assessing stability and change of children’s psychopathology symptoms can help elucidate whether specific behaviors are transient developmental...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号