首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   11篇
  国内免费   4篇
妇产科学   4篇
基础医学   29篇
口腔科学   6篇
临床医学   5篇
内科学   37篇
皮肤病学   2篇
神经病学   17篇
特种医学   1篇
外科学   16篇
预防医学   10篇
眼科学   1篇
药学   13篇
中国医学   1篇
肿瘤学   1篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   6篇
  2017年   4篇
  2016年   6篇
  2015年   4篇
  2014年   9篇
  2013年   5篇
  2012年   15篇
  2011年   19篇
  2010年   9篇
  2009年   6篇
  2008年   4篇
  2007年   6篇
  2006年   11篇
  2005年   9篇
  2004年   4篇
  2003年   5篇
  2002年   9篇
  1988年   1篇
排序方式: 共有143条查询结果,搜索用时 14 毫秒
31.
Alcoholic liver disease (ALD) features increased hepatic exposure to bacterial lipopolysaccharide (LPS). Toll-like receptor-4 (TLR4) recognizes LPS and activates signaling pathways depending on MyD88 or TRIF adaptors. We previously showed that MyD88 is dispensable in ALD. TLR4 induces Type I interferons (IFNs) in an MyD88-independent manner that involves interferon regulatory factor-3 (IRF3). We fed alcohol or control diets to wild-type (WT) and IRF3 knock-out (KO) mice, and to mice with selective IRF3 deficiency in liver parenchymal and bone marrow-derived cells. Whole-body IRF3-KO mice were protected from alcohol-induced liver injury, steatosis, and inflammation. In contrast to WT or bone marrow-specific IRF3-KO mice, deficiency of IRF3 only in parenchymal cells aggravated alcohol-induced liver injury, associated with increased proinflammatory cytokines, lower antiinflammatory cytokine interleukin 10 (IL-10), and lower Type I IFNs compared to WT mice. Coculture of WT primary murine hepatocytes with liver mononuclear cells (LMNC) resulted in higher LPS-induced IL-10 and IFN-β, and lower tumor necrosis factor alpha (TNF-α) levels compared to LMNC alone. Type I IFN was important because cocultures of hepatocytes with LMNC from Type I IFN receptor KO mice showed attenuated IL-10 levels compared to control cocultures from WT mice. We further identified that Type I IFNs potentiated LPS-induced IL-10 and inhibited inflammatory cytokine production in both murine macrophages and human leukocytes, indicating preserved cross-species effects. These findings suggest that liver parenchymal cells are the dominant source of Type I IFN in a TLR4/IRF3-dependent manner. Further, parenchymal cell-derived Type I IFNs increase antiinflammatory and suppress proinflammatory cytokines production by LMNC in paracrine manner. CONCLUSION: Our results indicate that IRF3 activation in parenchymal cells and resulting type I IFNs have protective effects in ALD by way of modulation of inflammatory functions in macrophages. These results suggest potential therapeutic targets in ALD.  相似文献   
32.
33.
34.

Objectives

Earlier studies demonstrated that dental resin monomers lower cellular viability and provoke oxidative stress. Reactive oxygen species (ROS) formation has a key role in triethylene glycol dimethacrylate (TEGDMA) induced adverse reactions. In the present study the effects of TEGDMA on mitochondrial functions were investigated to identify a direct molecular target for cytotoxicity.

Methods

Mitochondria were isolated from guinea pig brain. The most important bioenergetic parameters, oxygen consumption, membrane potential (ΔΨm), and ATP production were assessed. Mitochondrial H2O2 production and elimination and the NAD(P)H level reported on redox balance.

Results

Mitochondria were supported with respiratory substrates to be oxidized by either Complex I (CI) or Complex II (CII). ΔΨm was depolarized, respiration and ATP production was greatly diminished when applying CI substrates in the presence of TEGDMA. The same parameters remained essentially unaffected when CII substrate plus TEGDMA were applied. H2O2 production by mitochondria was significantly stimulated by TEGDMA in the presence of CI substrates. In the presence of TEGDMA mitochondrial elimination of exogenous H2O2 was impaired. When CII substrate supported the mitochondria in the absence of ADP the H2O2 generation was decreased. NADH autofluorescence results also demonstrated the inhibitory effect of TEGDMA on CI activity.

Significance

TEGDMA inhibits CI in the respiratory chain, which explains effects induced by TEGDMA on redox homeostasis, apoptotic and necrotic cell deaths described in previous studies. Identification of the molecular target of TEGDMA may influence the development of relevant biomaterials and may induce new therapeutic strategies to control the adverse effects of resin monomers.  相似文献   
35.
The insulin receptor (IR) is expressed by a subpopulation of primary sensory neurons (PSN), including a proportion of cells expressing the nociceptive transducer vanilloid type 1 transient receptor potential receptor (TRPV1). Recent data suggest functional links between the IR and other receptors, including TRPV1, which could be involved in the development of PSN malfunctions in pathological insulin secretion. Here we used combined immunohistochemical labelling on sections from L4-5 dorsal root ganglia of wild-type (WT) and TRPV1 knockout (KO) mice to examine the neurochemical properties of IR-expressing PSN and the possible effect of deletion of TRPV1 on those characteristics. We found that antibodies raised against the high-molecular-weight neurofilament (NF-200) and the neurofilament protein peripherin distinguished between small and large neurons. We also found that the IR was expressed predominantly by the small peripherin-immunopositive cells both in the WT and in the KO animals. IR expression, however, did not show any preference between the major subpopulations of the small cells, the calcitonin gene-related peptide (CGRP)-expressing and Bandeiraea simplicifolia isolectin B4 (IB4)-binding neurons, either in the WT or in the KO mice. Nevertheless, a significant proportion of the IR-expressing cells also expressed TRPV1. Comparison of the staining pattern of these markers showed no difference between WT and KO animals. These findings indicate that the majority of the IR-expressing PSN are small neurons, which are considered as nociceptive cells. Furthermore, these data show that deletion of the TRPV1 gene does not induce any additional changes in neurochemical phenotype of nociceptive PSN.  相似文献   
36.
Several studies have shown that of the four major thymocyte subsets, the CD4/CD8 double positive (DP) thymocytes are the most sensitive to in vivo glucocorticoid hormone (GC)-induced apoptosis. Our aim was to analyse fine molecular differences among thymocyte subgroups that could underlie this phenomenon. Therefore, we characterised the glucocorticoid hormone receptor (GR) expression of thymocyte subgroups both at the mRNA and protein levels by real-time PCR and flow cytometry, and correlated these features to their apoptotic sensitivity. We also investigated the time-dependent effects of the GC agonist dexamethasone (DX) with or without GC antagonist (RU486) treatments on GR mRNA/protein expression. We also analysed the expression of two apoptosis-related gene products: dexamethasone-induced gene 2 (Dig2) mRNA and Bcl-2 protein. We found that DN thymocytes had the highest GR expression, followed by CD8 single positive (SP), CD4 SP and DP thymocytes in 4-week-old BALB/c mice, both at the mRNA and protein levels, respectively. In DP cells, the Dig2 expression was significanty higher, while the Bcl-2 expression was significantly lower than in DN, CD4 SP and CD8 SP thymocytes. Single high dose DX treatment caused time-dependent depletion of DP thymocytes due to their higher apoptosis rate, which could not be abolished with RU486 pretreatment. After a single high dose DX treatment, there was a transient, significant increase of the GR mRNA and protein level of unsorted thymocytes after 8 and 16 h, followed by a significant decrease at 24 h, respectively. The time-dependent GR expression changes after DX administration could not be inhibited by the GC antagonist RU486. Twenty-four hours after exposure to high dose DX the DN, CD4 SP and CD8 SP cells showed a significant decrease of GR mRNA and protein expression, whereas the DP thymocytes, showed no significant alteration of GR mRNA or protein expression. The kinetical analysis of GR expression and apoptotic marker changes upon single high dose GC analogue administration revealed a two-phase process in thymocytes: early events, within 4–8 h, include GR upregulation and early apoptosis induction, while the late events appear most prominently at 16–20 h, when the GR is already downregulated and apoptotic cell ratio reaches its peak, with marked DP cell depletion. The low GR, high Dig2 and low Bcl-2 expression, coupled with the absence of homologous downregulation of GR after exogenous GC analogue treatment, could contribute to the high GC sensitivity of DP thymocytes. The downregulated GR and Bcl-2 together with the upregulated Dig2 level in DP cells indicates the significance of intrathymic GC effects at this differentiation stage. Since GR expression changes and apoptotic events could not be completely inhibited by GC antagonist, we propose the involvement of non-genomic GR mechanisms in these processes.  相似文献   
37.
Application of neurobiotin to the nerves of individual labyrinthine organs and dorsal root fibers of limb-innervating segments of the frog resulted in labeling of granule cells in the cerebellum showing a significant overlap with a partial segregation in the related areas of termination. In different parts of the cerebellum, various combinations of different canal and otolith organ-related granule cells have been discerned. The difference in the extension of territories of vertical canals vs. horizontal canals may reflect their different involvement in the vestibuloocular and vestibulospinal reflex. Dye-coupled cells related to the lagenar and saccular neurons were localized in more rostral parts of the cerebellum, whereas cells of the utricle were represented only in its caudal half. This separation is supportive of the dual function of the lagena and the saccule. The territories of granule cells related to the cervical and lumbar segments of the spinal cord were almost completely separated along the rostrocaudal axis of cerebellum, whereas their territories were almost entirely overlapping in the mediolateral and ventrodorsal directions. The partial overlap of labyrinthine organ-related and dorsal root fiber-related granule cells are suggestive of a convergence of sensory modalities involved in the sense of balance. We propose that the afferent input of vestibular and proprioceptive fibers mediated by gap junctions to the cerebellar granule cells subserve one of the possible morphological correlates of a very rapid modification of the motor activity in the vestibulocerebellospinal neuronal circuit.  相似文献   
38.
39.
We studied the effects of cannabinoids on contextual conditioned fear responses. CB1 knockout and wild-type (CD1) mice were exposed to a brief session of electric shocks, and their behavior was studied in the same context 24 h later. In wild-type mice, shock exposure increased freezing and resting, and decreased locomotion and exploration. The genetic disruption of the CB1 receptor abolished the conditioned fear response. The CB1 antagonist AM-251 reduced the peak of the conditioned fear response when applied 30 min before behavioral testing (i.e. 24 h after shocks) in CD1 (wild-type) mice. The cannabinoid agonist WIN-55,212-2 markedly increased the conditioned fear response in CD1 mice, the effect of which was potently antagonized by AM-251. Thus, cannabinoid receptor activation appears to strongly promote the expression of contextual conditioned fear. In earlier experiments, cannabinoids did not interfere with the expression of cue-induced conditioned fear but strongly promoted its extinction. Considering the primordial role of the amygdala in simple associative learning (e.g. in cue-induced fear) and the role of the hippocampus in learning more complex stimulus relationships (e.g. in contextual fear), the present and earlier findings are not necessarily contradictory, but suggest that cannabinoid signaling plays different roles in the two structures. Data are interpreted in terms of the potential involvement of cannabinoids in trauma-induced behavioral changes.  相似文献   
40.
Galactoside-specific plant lectin, Viscum album agglutinin-I (VAA-I) has been shown to act as a biomodulator with proinflammatory and apoptosis-inducing effects, however its cellular targets and mechanism of immunobiological action in vivo are less well understood. Therefore, in the present work the short- and long-term in vivo effects of VAA-I on thymocyte subpopulations and peripheral T cells were tested using a murine (Balb/c) model. Cell surface CD4/CD8 staining and flow cytometry allowed us to follow the changes of thymocyte subpopulations: CD4-CD8- double negative (DN), CD4+CD8+ double positive (DP), CD4+ or CD8+ single positive (SP) and mature peripheral T cells after single or repeated injections with low doses of VAA-I. The apoptosis of the cells was detected by flow cytometry using propidium iodide (PI) and Annexin V staining. To detect the short-term effects of the lectin, the animals were investigated 24 h after a single injection of 1 or 30 ng/kg body weight (BW) VAA-I+/-1 mg/kg Dexamethasone (DX). The total number of mature CD8+ SP thymocytes increased significantly with an enhancement of the ratio of apoptotic cells. In contrast, in the blood samples an elevated CD4/CD8 ratio was found. In the next trial, Balb/c mice were treated twice weekly with 1 or 30 ng/kg VAA-I+/-1 mg/kg DX for 3 weeks. The total cell count of thymocytes showed significant increases after both doses of VAA-I, but an elevated percentage of apoptotic cells was found only after treatment with 30 ng/kg VAA-I. SP thymocytes revealed higher increases in lectin-induced apoptosis than DN or DP cells. In addition, both lectin doses significantly inhibited the DX-induced reduction of all thymocyte subpopulations investigated. In conclusion, our data suggest that VAA-I is able to modulate the maturation of thymocytes in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号