首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3384篇
  免费   345篇
  国内免费   13篇
耳鼻咽喉   9篇
儿科学   100篇
妇产科学   102篇
基础医学   369篇
口腔科学   56篇
临床医学   324篇
内科学   650篇
皮肤病学   43篇
神经病学   372篇
特种医学   133篇
外科学   456篇
综合类   103篇
一般理论   5篇
预防医学   396篇
眼科学   46篇
药学   331篇
中国医学   1篇
肿瘤学   246篇
  2021年   32篇
  2020年   29篇
  2019年   45篇
  2018年   52篇
  2017年   43篇
  2016年   49篇
  2015年   50篇
  2014年   71篇
  2013年   106篇
  2012年   196篇
  2011年   178篇
  2010年   88篇
  2009年   87篇
  2008年   165篇
  2007年   168篇
  2006年   159篇
  2005年   125篇
  2004年   119篇
  2003年   119篇
  2002年   99篇
  2001年   96篇
  2000年   107篇
  1999年   107篇
  1998年   42篇
  1997年   48篇
  1996年   40篇
  1995年   50篇
  1994年   46篇
  1993年   41篇
  1992年   75篇
  1991年   78篇
  1990年   83篇
  1989年   50篇
  1988年   60篇
  1987年   60篇
  1986年   51篇
  1985年   35篇
  1984年   34篇
  1983年   43篇
  1982年   33篇
  1981年   33篇
  1980年   32篇
  1979年   26篇
  1978年   31篇
  1977年   37篇
  1976年   28篇
  1974年   31篇
  1972年   33篇
  1968年   27篇
  1967年   25篇
排序方式: 共有3742条查询结果,搜索用时 31 毫秒
101.
Aims/hypothesis. We have previously shown that lactate protects brain function during insulin-induced hypoglycaemia. An adaptation process could, however, not be excluded because the blood lactate increase preceded hypoglycaemia.¶Methods. We studied seven healthy volunteers and seven patients with Type I (insulin-dependent) diabetes mellitus with a hyperinsulinaemic (1.5 mU · kg–1· min–1) stepwise hypoglycaemic clamp (4.8 to 3.6, 3.0 and 2.8 mmo/l) with and without Na-lactate infusion (30 μmol · kg–1· min–1) given after initiation of hypoglycaemic symptoms.¶Results. The glucose threshold for epinephrine response was similar (control subjects 3.2 ± 0.1 vs 3.2 ± 0.1, diabetic patients = 3.5 ± 0.1 vs 3.5 ± 0.1 mmol/l) in both studies. The magnitude of the response was, however, blunted by lactate infusion (AUC; control subjects 65 ± 28 vs 314 ± 55 nmol/l/180 min, zenith = 2.6 ± 0.5 vs 4.8 ± 0.7 nmol/l, p < 0.05; diabetic patients = 102 ± 14 vs 205 ± 40 nmol/l/180 min, zenith = 1.4 ± 0.4 vs 3.2 ± 0.3 nmol/l, p < 0.01). The glucose threshold for symptoms was also similar (C = autonomic 3.0 ± 0.1 vs 3.0 ± 0.1, neuroglycopenic = 2.8 ± 0.1 vs 2.9 ± 0.1 mmol/l, D = autonomic 3.2 ± 0.1 vs 3.2 ± 0.1, neuroglycopenic 3.1 ± 0.1 vs 3.2 ± 0.1 mmol/l) but peak responses were significantly attenuated by lactate (score at 160 min C = 2.6 ± 1 vs 8.8 ± 1, and 0.4 ± 0.4 vs 4.8 ± 1, respectively; p = 0.02–0.01, D = 1.3 ± 0.5 vs 6.3 ± 1.7, and 2.3 ± 0.6 vs 5.7 ± 1.1 p = 0.07–0.02). Cognitive function deteriorated in both studies at similar glucose thresholds (C = 3.1 ± 0.1 vs 3.0 ± 0.1, D = 3.2 ± 0.1 vs 3.3 ± 0.2 mmol/l). Although in normal subjects a much smaller impairment was observed with lactate infusion (Δ four-choice reaction time at 160 min = 22 ± 12 vs 77 ± 31 ms; p = 0.02), in Type I diabetic patients lactate infusion was associated with an improvement in cognitive dysfunction (0.2 ± 0.4 vs –38 ± 0.2 Δ ms, p = 0.0001).¶Conclusion/interpretation. A blood lactate increase after the development of hypoglycaemic symptoms reduces counterregulatory and symptomatic responses to insulin-induced hypoglycaemia and favours brain function rescue both in normal and diabetic subjects. These findings confirm that lactate is an alternative substrate to glucose for cerebral metabolism under hypoglycaemic conditions. [Diabetologia (2000) 43: 733–741]  相似文献   
102.

Aims/hypothesis

Impaired awareness of hypoglycaemia (IAH) in type 1 diabetes increases the risk of severe hypoglycaemia sixfold and can be resistant to intervention. We explored the impact of IAH on central responses to hypoglycaemia to investigate the mechanisms underlying barriers to therapeutic intervention.

Methods

We conducted [15O]water positron emission tomography studies of regional brain perfusion during euglycaemia (target 5 mmol/l), hypoglycaemia (achieved level, 2.4 mmol/l) and recovery (target 5 mmol/l) in 17 men with type 1 diabetes: eight with IAH, and nine with intact hypoglycaemia awareness (HA).

Results

Hypoglycaemia with HA was associated with increased activation in brain regions including the thalamus, insula, globus pallidus (GP), anterior cingulate cortex (ACC), orbital cortex, dorsolateral frontal (DLF) cortex, angular gyrus and amygdala; deactivation occurred in the temporal and parahippocampal regions. IAH was associated with reduced catecholamine and symptom responses to hypoglycaemia vs HA (incremental AUC: autonomic scores, 26.2?±?35.5 vs 422.7?±?237.1; neuroglycopenic scores, 34.8?±?88.8 vs 478.9?±?311.1; both p?<?0.002). There were subtle differences (p?<?0.005, k?≥?50 voxels) in brain activation at hypoglycaemia, including early differences in the right central operculum, bilateral medial orbital (MO) cortex, and left posterior DLF cortex, with additional differences in the ACC, right GP and post- and pre-central gyri in established hypoglycaemia, and lack of deactivation in temporal regions in established hypoglycaemia.

Conclusions/interpretation

Differences in activation in the post- and pre-central gyri may be expected in people with reduced subjective responses to hypoglycaemia. Alterations in the activity of regions involved in the drive to eat (operculum), emotional salience (MO cortex), aversion (GP) and recall (temporal) suggest differences in the perceived importance and urgency of responses to hypoglycaemia in IAH compared with HA, which may be key to the persistence of the condition.
  相似文献   
103.
OBJECTIVE: To determine, over time, the rate and serotypes of pneumococci with reduced penicillin susceptibility obtained from children with invasive infection. DESIGN: Active, hospital-based, multicentre surveillance spanning from 1991 to 1998. SETTING: Eleven Canadian tertiary care paediatric facilities located from coast to coast. POPULATION STUDIED: 1847 children with invasive pneumococcal infection whose isolates (from a normally sterile site) were available for serotyping and standardized testing for penicillin susceptibility at the National Centre for Streptococcus. MAIN RESULTS: The prevalence of reduced penicillin susceptibility increased from 2.5% of 197 cases in 1991 to 13.0% of 276 cases in 1998. In the latter year, 8.7% of isolates had intermediate level resistance, and 4.3% had high level resistance. Since they were first detected in 1992, strains with high level resistance have been encountered only sporadically at most centres, but by 1998, all centres but two had encountered examples. Of 40 isolates with high level resistance and 101 isolates with intermediate level resistance, serotypes matched those included in new seven-valent conjugate vaccines for children in 97.5% and 79.2% of cases, respectively. CONCLUSIONS: Pneumococci with reduced susceptibility to penicillin are increasing in frequency across Canada among children with invasive infection. The Immunization Monitoring Program, Active data indicate that new conjugate vaccines could help to curb infections due to pneumococci with reduced susceptibility to penicillin but are unlikely to control completely the problem of antibiotic resistance.  相似文献   
104.
105.
106.
107.
108.
With the development and increasing accessibility of new genomic tools such as next-generation sequencing, genome-wide association studies, and genomic stratification models, the debate on genetic discrimination in the context of life insurance became even more complex, requiring a review of current practices and the exploration of new scenarios. In this perspective, a multidisciplinary group of international experts representing different interests revisited the genetics and life insurance debate during a 2-day symposium ‘Life insurance: breast cancer research and genetic risk prediction seminar'' held in Quebec City, Canada on 24 and 25 September 2012. Having reviewed the current legal, social, and ethical issues on the use of genomic information in the context of life insurance, the Expert Group identified four main questions: (1) Have recent developments in genomics and related sciences changed the contours of the genetics and life insurance debate? (2) Are genomic results obtained in a research context relevant for life insurance underwriting? (3) Should predictive risk assessment and risk stratification models based on genomic data also be used for life insurance underwriting? (4) What positive actions could stakeholders in the debate take to alleviate concerns over the use of genomic information by life insurance underwriters? This paper presents a summary of the discussions and the specific action items recommended by the Expert Group.Access to genetic information by life insurers has been a topic of discussion for many years.1 The possibility of using genetic data to underwrite an applicant''s insurance policy has given rise to concerns about the emergence of ‘genetic discrimination''. Genetic discrimination in the field of life insurance is not necessarily illegal in that in insurance underwriting questions about health, family history of disease, or genetic information may constitute legal exceptions to antidiscrimination legislation.2, 3 Nevertheless, the expression ‘genetic discrimination'' has acquired public notoriety4 and we will use more neutral language in this paper.Countries including Canada, the United States, Russia, and Japan5 have chosen not to adopt laws specifically prohibiting access to genetic data for underwriting by life insurers.6 In these countries, life insurance underwriters treat genetic data like other types of medical or lifestyle data. However, a growing number of countries such as Belgium, France, and Norway5 have chosen to adopt laws to prevent or limit insurers'' access to genetic data for life insurance underwriting. Other countries including Finland and the United Kingdom have developed voluntary arrangements with the industry (ie moratoria) with similar objectives.7Life insurance is a private contract between the policy-holder and the insurer. Its principal role is to provide financial security to the beneficiaries in the event of the insured''s death.8 Because of this important role, life insurance is often required, or strongly recommended for those seeking loans to acquire primary social goods, like housing or cars.9 In Europe, a consequence of the advent of the welfare state is that private insurance has increasingly played a complementary and supplementary role to social insurance by offering additional security and protection to the population. Thus, in this region, insurance is often considered as a social good that allows individuals to live a comfortable life and as a tool to promote social integration.10 In other regions of the world, this social role of life insurance is also recognized to a lesser extent. Given this social role, equitable access to life insurance is perceived as a sensitive issue and cases of denial looked upon negatively in popular media. Although documented incidents of denial or of increased premiums on the basis of genetic information have remained limited to the context of a few relatively well known, highly penetrant, familial, adult-onset, genetic conditions,11 they have nevertheless generated significant public concern. Fear that insurers will have access to genetic information generated in a clinical or research setting for use in underwriting has been reported by several studies as a reason for non-participation in genetic research or recommended clinical genetic testing.12, 13, 14The clinical utility of genetic testing for monogenic disorders such as Huntington disease, and hereditary forms of cancer are well established.15 However, genomic risk profiles based on the known common susceptibility variants have limited utility in risk prediction at the individual level, although they could be used for risk stratification in prevention programmes in populations.16 Today, a new era of genomic research has made it increasingly affordable to scan the entire genome of an individual. Researchers and physicians can interpret these data together with medical and lifestyle information in the form of sophisticated risk prediction models.17 Moreover, improvement in computing technologies coupled with the Internet make predictive information increasingly available, whether through direct-to-consumer marketing of genetic tests, genetic data sharing online communities, or international research database projects. Given these important technological and scientific changes, and their impact on various stakeholders. The term ‘stakeholders'' is used in this text to refer to the following groups of individuals: actuaries (person who computes insurance risk and premium rates based on statistical data), academic researchers, community representatives, ethics committees, genetic counsellors, genomic researchers, human rights experts, insurers, governmental representatives, non-governmental organisations, patient representatives, physicians, policy makers, popular media, reinsurers (company in charge of calculating the risk and premium amount for insuring a particular customer), research participants, and underwriters (company or person in charge of calculating the risk involved in providing insurance for a particular customer and to decide how much should be paid for the premium). This list is not meant to be exhaustive as relevant new groups may emerge as this topic further develops in the coming years. A multidisciplinary group of international experts representing different interests (hereinafter ‘the Expert Group'') revisited the genetics and life insurance debate. The following text presents a summary of the issues discussed and the ‘Action Items'' agreed upon by the Expert Group at the ‘Life Insurance, Risk Stratification, and Personalized Medicine Symposium''.  相似文献   
109.
5F‐PY‐PICA and 5F‐PY‐PINACA are pyrrolidinyl 1‐(5‐fluoropentyl)ind (az)ole‐3‐carboxamides identified in 2015 as putative synthetic cannabinoid receptor agonist (SCRA) new psychoactive substances (NPS). 5F‐PY‐PICA, 5F‐PY‐PINACA, and analogs featuring variation of the 1‐alkyl substituent or contraction, expansion, or scission of the pyrrolidine ring were synthesized and characterized by nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography–quadrupole time‐of‐flight–mass spectrometry (LC–QTOF–MS). In competitive binding experiments against HEK293 cells expressing human cannabinoid receptor type 1 (hCB1) or type 2 (hCB2), all analogs showed minimal affinity for CB1 (pKi < 5), although several demonstrated moderate CB2 binding (pKi 5.45–6.99). In fluorescence‐based membrane potential assays using AtT20‐hCB1 or ‐hCB2 cells, none of the compounds (at 10 μM) produced an effect >50% of the classical cannabinoid agonist CP55,940 (at 1 μM) at hCB1, although several showed slightly higher relative efficacy at hCB2. Expansion of the pyrrolidine ring of 5F‐PY‐PICA to an azepane ( 8 ) conferred the greatest hCB2 affinity (pKi 6.99) and activity (pEC50 7.54, Emax 72%) within the series. Unlike other SCRA NPS evaluated in vivo using radio biotelemetry, 5F‐PY‐PICA and 5F‐PY‐PINACA did not produce cannabimimetic effects (hypothermia, bradycardia) in mice at doses up to 10 mg/kg.  相似文献   
110.
Previous evidence suggests soy genistein may be protective against prostate cancer, but whether this protection involves an estrogen receptor (ER)-dependent mechanism is unknown. To test the hypothesis that phytoestrogens may act through ERα or ERβ to play a protective role against prostate cancer, we bred transgenic mice lacking functional ERα or ERβ with transgenic adenocarcinoma of mouse prostate (TRAMP) mice. Dietary genistein reduced the incidence of cancer in ER wild-type (WT)/transgenic adenocarcinoma of mouse prostate mice but not in ERα knockout (KO) or ERβKO mice. Cancer incidence was 70% in ERWT mice fed the control diet compared with 47% in ERWT mice fed low-dose genistein (300 mg/kg) and 32% on the high-dose genistein (750 mg/kg). Surprisingly, genistein only affected the well differentiated carcinoma (WDC) incidence but had no effect on poorly differentiated carcinoma (PDC). No dietary effects have been observed in either of the ERKO animals. We observed a very strong genotypic influence on PDC incidence, a protective effect in ERαKO (only 5% developed PDC), compared with 19% in the ERWT, and an increase in the incidence of PDC in ERβKO mice to 41%. Interestingly, immunohistochemical analysis showed ERα expression changing from nonnuclear in WDC to nuclear in PDC, with little change in ERβ location or expression. In conclusion, genistein is able to inhibit WDC in the presence of both ERs, but the effect of estrogen signaling on PDC is dominant over any dietary treatment, suggesting that improved differential targeting of ERα vs. ERβ would result in prevention of advanced prostate cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号