首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376篇
  免费   34篇
儿科学   18篇
妇产科学   2篇
基础医学   64篇
口腔科学   1篇
临床医学   22篇
内科学   56篇
皮肤病学   2篇
神经病学   12篇
特种医学   2篇
外科学   41篇
综合类   46篇
一般理论   1篇
预防医学   41篇
眼科学   2篇
药学   52篇
中国医学   25篇
肿瘤学   23篇
  2023年   1篇
  2022年   12篇
  2021年   17篇
  2020年   14篇
  2019年   12篇
  2018年   11篇
  2017年   6篇
  2016年   6篇
  2015年   7篇
  2014年   16篇
  2013年   13篇
  2012年   25篇
  2011年   18篇
  2010年   18篇
  2009年   8篇
  2008年   23篇
  2007年   17篇
  2006年   18篇
  2005年   27篇
  2004年   30篇
  2003年   18篇
  2002年   16篇
  2001年   8篇
  2000年   7篇
  1999年   7篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   5篇
  1994年   5篇
  1993年   4篇
  1992年   7篇
  1991年   1篇
  1990年   5篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1967年   2篇
  1941年   1篇
排序方式: 共有410条查询结果,搜索用时 31 毫秒
11.
Campylobacter jejuni is the most important cause of antecedent infections leading to Guillain–Barré syndrome (GBS) and Miller Fisher syndrome (MFS). The objective of the present study was to define the genetic diversity, population structure, and potential role of poultry in the transmission of Campylobacter to humans in Bangladesh. We determined the population structure of C. jejuni isolated from poultry (n?=?66) and patients with enteritis (n?=?39) or GBS (n?=?10). Lipooligosaccharide (LOS) typing showed that 50/66 (76 %) C. jejuni strains isolated from poultry could be assigned to one of five LOS locus classes (A–E). The distribution of neuropathy-associated LOS locus classes A, B, and C were 30/50 (60 %) among the typable strains isolated from poultry. The LOS locus classes A, B, and C were significantly associated with GBS and enteritis-related C. jejuni strains more than for the poultry strains [(31/38 (82 %) vs. 30/50 (60 %), p?p?C. jejuni isolated from humans and poultry. There seems to be a lack of overlap between the major human and chicken clones, which suggests that there may be additional sources for campylobacteriosis other than poultry in Bangladesh.  相似文献   
12.
The hydrophobic ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate [Bmim][PF6] forms nanostructures with negatively charged plasmid DNA through electrostatic interactions. The formation of plasmid DNA/IL nanostructures was confirmed by measuring the zeta potential of plasmid DNA as well as plasmid DNA/IL nanostructures. The zeta potential of the nanostructures was positive, although plasmid DNA is negatively charged. The positive zeta potential is due to the complexation between plasmid DNA and positively charged ionic liquid [Bmim][PF6]. The ability of ionic liquid [Bmim][PF6] to protect plasmid DNA against ultrasonic shear stress was also investigated using an agarose gel electrophoretic assay and showed that ionic liquid stabilizes plasmid DNA against ultrasonication. The plasmid DNA and plasmid DNA/IL nanostructures were subjected to ultrasonic shear stress for different time periods and the biological functionality of pristine plasmid DNA (i.e., expression of the eGFP gene) as well as the self-assembled nanostructures was investigated in vitro using three different cell lines, COS7, HEK293 and HeLa. Ionic liquid [Bmim][PF6] protected the plasmid DNA against ultrasonic shear stress and also enhanced gene transfection efficiency in vitro. Furthermore, the cytotoxicity of ionic liquid [Bmim][PF6] was assayed in vitro using all three cell lines and the toxicity was very low. Therefore, the ionic liquid [Bmim][PF6] stabilizes plasmid DNA against ultrasonic shear stress and also enhances its in vitro delivery efficiency.

The hydrophobic ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate [Bmim][PF6] forms ultrasonically stable and functional nanostructures with negatively charged plasmid DNA through electrostatic interactions.  相似文献   
13.
In addition to good mechanical properties needed for three-dimensional tissue engineering, the combination of alginate dialdehyde, gelatin and nano-scaled bioactive glass (45S5) is supposed to combine excellent cellular adhesion, proliferation and differentiation properties, good biocompatibility and predictable degradation rates. The goal of this study was to evaluate thein vitro and in vivo biocompatibility as a first step on the way to its use as a scaffold in bone tissue engineering. In vitro evaluation showed good cell adherence and proliferation of bone marrow derived mesenchymal stem cells seeded on covalently crosslinked alginate dialdehyde-gelatin (ADA-GEL) hydrogel films with and without 0.1% nano-Bioglass®(nBG). Lactate dehydrogenase (LDH)- and mitochondrial activity significantly increased in both ADA-GEL and ADA-GEL-nBG groups compared to alginate. However, addition of 0.1% nBG seemed to have slight cytotoxic effect compared to ADA-GEL. In vivo implantation did not produce a significant inflammatory reaction, and ongoing degradation could be seen after four weeks. Ongoing vascularization was detected after four weeks. The good biocompatibility encourages future studies using ADA-GEL and nBG for bone tissue engineering application.  相似文献   
14.
It is both challenging and desirable to have drug sensitizers released at acidic tumor pH for photodynamic therapy in cancer treatment. A pH-responsive carrier was prepared, in which fumed silica-attached 5,10,15,20-tetrakis(4-trimethylammoniophenyl)porphyrin (TTMAPP) was encapsulated into 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) nanocomposite liposomes. The sizes of agglomerates were determined by dynamic light scattering to be 115 nm for silica and 295 nm for silica-TTMAPP-DOPC liposomes. Morphological changes were also found in TEM images, showing liposome formation at pH 8.5 but collapse upon silanol protonation. TTMAPP release is enhanced from 13% at pH 7.5 to 80% at pH 2.3, as determined spectrophotometrically through dialysis membranes. Fluorescence emission of TTMAPP encapsulated in the dry film of liposomes was reduced to half at pH 8.6 when compared to that at pH 5.4, while the production of singlet oxygen was quintupled at pH 5.0 compared to pH 7.6. Upon treatment of human prostate cancer cells with liposomes containing 6.7 μM, 13 μM, 17 μM and 20 μM TTMAPP, the cell viabilities were determined to be 60%, 18%, 20% and 5% at pH 5.4; 58%, 30%, 25% and 10% at pH 6.3; and 90%, 82%, 68% and 35% at pH 7.4, respectively. Light-induced apoptosis in cancerous cells was only observed in the presence of liposomes at pH 6.3 and pH 5.4 but not at pH 7.4, as indicated by chromatin condensation.

Nanocomposite liposomes are relatively stable in weak basic solutions but effectively release porphyrins at acidic pH, as indicated by the difference in fluorescence.  相似文献   
15.
16.

Objective:

Keyhole limpet hemocyanin (KLH) is a popular tumor vaccine carrier protein and an immunostimulant. The present study aimed to investigate the immunoregulatory activity of KLH on cytotoxicity, cytokines production, and proliferation of natural killer (NK) cells. Moreover, antiproliferative activity of KLH on Meth A sarcoma cells was studied.

Materials and Methods:

Cytotoxicity was determined with killing ability of NK cells against yeast artificial chromosome (YAC)-1 cells. Interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) productions by NK cells were measured by enzyme-linked immunosorbent assay (ELISA). Proliferations of NK and Meth A cells were determined by [3H]thymidine incorporated proliferation and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) methods, respectively.

Results:

KLH at 6.25, 12.5, and 25 μg/well augmented cytotoxicity of NK cells against YAC-1 cells by 2.5, three, and five-times, respectively. KLH at 25 μg/well enhanced IFN-γ and TNF-α productions by 17- and 23-folds, respectively. The proliferation of NK cells was three times stimulated by KLH. The proliferation of Meth A cells was markedly inhibited by all the doses; the highest (4-folds higher) inhibition was observed at a dose of KLH (25 μg/well).

Conclusion:

The study demonstrated the anticancer activity of KLH acting through the induction of NK cells and inhibition of cancer cells. KLH, therefore, may be a good candidate for an anticancer agent alone or in combination with other chemotherapeutic agents.KEY WORDS: Anticancer activity, cytotoxicity, cytokines, Keyhole limpet hemocyanin, Natural Killer cells, Meth A sarcoma cells, YAC-1 cells  相似文献   
17.

Objectives

Burning of biomass fuel (cow-dung, crop residue, dried leaves, wood, etc.) in the kitchen releases smoke, which may impair the respiratory functions of women cooking there. This paper aimed to compare the respiratory symptoms between biomass fuel users and gas fuel users in Bangladesh.

Methods

A cross-sectional survey was conducted through face-to-face interviews and chest examination of 224 adult women using biomass fuel in a rural village and 196 adult women using gas fuel in an urban area.

Results

The prevalence of respiratory involvement (at least one among nine symptoms and two diseases) was significantly higher among biomass users than among gas users (29.9 vs. 11.2 %). After adjustment for potential confounders by a logistic model, the odds ratio (OR) of the biomass users for the respiratory involvement was significantly higher (OR = 3.23, 95 % confidence interval 1.30–8.01). The biomass fuel use elevated symptoms/diseases significantly; the adjusted OR was 3.04 for morning cough, 7.41 for nasal allergy, and 5.94 for chronic bronchitis. The mean peak expiratory flow rate of biomass users (253.83 l/min) was significantly lower than that of gas users (282.37 l/min).

Conclusions

The study shows significant association between biomass fuel use and respiratory involvement among rural women in Bangladesh, although the potential confounding of urban/rural residency could not be ruled out in the analysis. The use of smoke-free stoves and adequate ventilation along with health education to the rural population to increase awareness about the health effects of indoor biomass fuel use might have roles to prevent these involvements.  相似文献   
18.
Excessive use of pesticides in agricultural fields is a matter of great concern for living beings as well as the environment across the world, in particular, the third world countries. Therefore, there is an urgent need to find out an effective way to degrade these hazardous chemicals from the soil in an environment-friendly way. In the current project, a bacterial species were isolated through enrichment culture from carbofuran-supplemented rice-field soil and identified as a carbofuran degrader. The rate of carbofuran degradation by this bacterial species was evaluated using reverse-phase high-performance liquid chromatography (RP-HPLC), which confirmed the ability to utilize as a carbon source up to 4 µg/ml of 99% technical grade carbofuran. The morphological, physiological, biochemical characteristics and phylogenetic analysis of the 16S rRNA sequence showed that this strain belongs to the genus of Enterobacter sp. (sequence accession number LC368285 in DDBJ), and the optimum growth condition for the isolated strain was 37°C at pH 7.0. Moreover, an antibiotic sensitivity test showed that it was susceptible to azithromycin, penicillin, ceftazidime, ciprofloxacin, and gentamycin, and the minimal inhibitory concentration value of gentamycin was 400 μg/ml against the bacteria. It shows beyond doubt from the RP-HPLC quantification that the isolated bacterium has the ability to detoxify carbofuran (99% pure). Finally, the obtained results imply that the isolated strain of Enterobacter can be used as a potential and effective carbofuran degrader for bioremediation of contaminated sites through bioaugmentation.  相似文献   
19.
Phenylethanoid glycosides (PhGs) are generally water-soluble phenolic compounds that occur in many medicinal plants. Until June 2020, more than 572 PhGs have been isolated and identified. PhGs possess antibacterial, anticancer, antidiabetic, anti-inflammatory, antiobesity, antioxidant, antiviral, and neuroprotective properties. Despite these promising benefits, PhGs have failed to fulfill their therapeutic applications due to their poor bioavailability. The attempts to understand their metabolic pathways to improve their bioavailability are investigated. In this review article, we will first summarize the number of PhGs compounds which is not accurate in the literature. The latest information on the biological activities, structure–activity relationships, mechanisms, and especially the clinical applications of PhGs will be reviewed. The bioavailability of PhGs will be summarized and factors leading to the low bioavailability will be analyzed. Recent advances in methods such as bioenhancers and nanotechnology to improve the bioavailability of PhGs are also summarized. The existing scientific gaps of PhGs in knowledge are also discussed, highlighting research directions in the future.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号