首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5176篇
  免费   481篇
  国内免费   18篇
耳鼻咽喉   134篇
儿科学   163篇
妇产科学   82篇
基础医学   693篇
口腔科学   180篇
临床医学   561篇
内科学   917篇
皮肤病学   99篇
神经病学   313篇
特种医学   288篇
外科学   647篇
综合类   162篇
一般理论   5篇
预防医学   579篇
眼科学   56篇
药学   379篇
  1篇
中国医学   6篇
肿瘤学   410篇
  2021年   65篇
  2020年   60篇
  2019年   91篇
  2018年   73篇
  2017年   74篇
  2016年   75篇
  2015年   92篇
  2014年   121篇
  2013年   164篇
  2012年   195篇
  2011年   202篇
  2010年   145篇
  2009年   112篇
  2008年   171篇
  2007年   213篇
  2006年   203篇
  2005年   206篇
  2004年   191篇
  2003年   175篇
  2002年   175篇
  2001年   145篇
  2000年   151篇
  1999年   136篇
  1998年   87篇
  1997年   83篇
  1996年   80篇
  1995年   62篇
  1994年   69篇
  1993年   69篇
  1992年   119篇
  1991年   180篇
  1990年   127篇
  1989年   108篇
  1988年   113篇
  1987年   89篇
  1986年   104篇
  1985年   87篇
  1984年   79篇
  1983年   64篇
  1982年   59篇
  1981年   51篇
  1979年   79篇
  1978年   52篇
  1977年   58篇
  1975年   58篇
  1974年   58篇
  1973年   53篇
  1972年   52篇
  1971年   49篇
  1970年   47篇
排序方式: 共有5675条查询结果,搜索用时 31 毫秒
71.
Eight patients with invasive bacteremic community-acquired methicillin-resistant Staphylococcus aureus infection in southeast Queensland, Australia, are reported. One patient died of septic shock. Haematogenous seeding to lungs, bone, and other sites was common. All isolates carried the virulence factor Panton-Valentine leukocidin and were either the southwest Pacific clone or the newly described Queensland clone. Clinicians should consider community-acquired methicillin-resistant Staphylococcus aureus infection in any patient presenting to hospital with severe staphylococcal sepsis or pneumonia.  相似文献   
72.
Phenotypic characterization of regulatory CD4+CD25+ T cells in rats   总被引:8,自引:0,他引:8  
CD25 has become widely used as a marker for a subset of regulatory CD4(+) T cells present in the thymus and periphery of mice, rats and humans. However, CD25 is also expressed on conventionally activated T cells that are not regulatory and not all peripheral regulatory T cells express CD25. The identification of a stable and unique marker for regulatory T cells would therefore be valuable. This study provides a detailed account of the phenotype of CD4(+)CD25(+) regulatory T cells in rats. In the thymus, CD4(+)CD8(-)CD25(+) cells were found to have a more mature phenotype than the corresponding CD4(+)CD8(-)CD25(-) cells with respect to expression of Thy1 (CD90), CD53 and CD44, suggesting that CD25 expression, and perhaps commitment to regulatory function, might be a late event in thymocyte development. CD4(+)CD25(+) cells in both the thymus and periphery were found to have enriched and heterogeneous expression of activation markers such as OX40 (CD134) and OX48 (an antibody determined in this study to be specific for CD86). CD4(+)CD25(+) T cells were also found to have enriched expression of CD80, at both the mRNA and protein level. However, functional studies in vitro and in vivo showed that neither OX40 or CD86 were useful markers for the further subdivision of regulatory T cells. Our studies indicate that, at present, CD25 remains the most useful marker to enrich for regulatory CD4(+) T cells in rats and no further subdivision of the regulatory component of CD4(+)CD25(-)CD45RC(low) T cells has yet been achieved.  相似文献   
73.
Tuberculosis is an important infectious disease in Thailand. Susceptibility to tuberculosis is influenced not only by the environment but also by host genetic factors. In this study, we investigated HLA alleles in 82 patients with tuberculosis from Bangkok and in 160 normal controls. HLA‐DRB1, DQA1 and DQB1 genotyping was performed by the PCR‐SSO method. The frequency of HLA‐DQB1*0502 was increased in tuberculosis patients compared to the normal controls (P = 0.01, OR = 2.06). In contrast, the frequencies of DQA1*0601 and DQB1*0301 were decreased in tuberculosis patients compared to the controls (P = 0.02 and P = 0.01, respect­ively). Our results suggest that HLA‐DQB1*0502 may be involved in the development of pulmonary tuberculosis, whereas HLA‐DQA1*0601 and DQB1*0301 may be associated with protection against tuberculosis.  相似文献   
74.
Three novel DRB3* alleles were identified using CANTYPE reverse hybridization assay. The initial unusual hybridization patterns of DRB3-specific polymerase chain reaction (PCR)-amplified DNA from each subject were confirmed by cloning and sequencing analysis. DRB3*0106 allele is identical to DRB3*0101 except for a single nucleotide substitution (CTG-->GTG) changing codon 38 from Leu to Val. This polymorphism is commonly found in DRB3*03 alleles. Compared with DRB3*0202, DRB3*02022 contains a single silent nucleotide substitution (AAT-->AAC, both encoding for Asn) at codon 77. This polymorphism is also present in DRB3*0204 allele. The new DRB3*0107 allele has a sequence unique to DRB3 alleles. From codon 5 to codon 36 the sequence is identical to that of DRB3*0101 allele. From codon 37 to codon 87 the sequence of DRB1*0107 allele is identical to that of DRB3*0202. This sequence would thus explain the CANTYPE(R) DRB3-specific unusual pattern of reactions. The new DRB3*0107 could have arisen from a gene conversion between DRB3*0101 and DRB3*0202 alleles, but the DRB3*0106 and the DRB3*02022 may have been generated by a point mutation event. The DRB3*0107 allele was identified in a Caucasoid individual. The ethnic origin of the subjects carrying the other two alleles are unknown. The three alleles presented here were only identified once, in a total population of 49,000.  相似文献   
75.
The simian-human immunodeficiency virus (SHIV)/ macaque model for human immunodeficiency virus type 1 has become a useful tool to assess the role of Vpu in lentivirus pathogenesis. In this report, we have mutated the two phosphorylated serine residues of the HIV-1 Vpu to glycine residues and have reconstructed a SHIV expressing this nonphosphorylated Vpu (SHIV(S52,56G)). Expression studies revealed that this protein was localized to the same intracellular compartment as wild-type Vpu. To determine if this virus was pathogenic, four pig-tailed macaques were inoculated with SHIV(S52,56G) and virus burdens and circulating CD4(+) T cells monitored up to 1 year. Our results indicate that SHIV(S52,56G) caused rapid loss in the circulating CD4(+) T cells within 3 weeks of inoculation in one macaque (CC8X), while the other three macaques developed no or gradual numbers of CD4(+) T cells and a wasting syndrome. Histological examination of tissues revealed that macaque CC8X had lesions in lymphoid tissues (spleen, lymph nodes, and thymus) that were typical for macaques inoculated with pathogenic parental SHIV(KU-1bMC33) and had no lesions within the CNS. To rule out that macaque CC8X had selected for a virus in which there was reversion of the glycine residues at positions 52 and 56 to serine residues and/or compensating mutations occurred in other genes associated with CD4 down-regulation, sequence analysis was performed on amplified vpu sequences isolated from PBMC and from several lymphoid tissues at necropsy. Sequence analysis revealed a reversion of the glycine residues back to serine residues in this macaque. The other macaques maintained low virus burdens, with one macaque (P003) developing a wasting syndrome between months 9 and 11. Histological examination of tissues from this macaque revealed a thymus with severe atrophy that was similar to that of a previously reported macaque inoculated with a SHIV lacking vpu (Virology 293, 2002, 252). Sequence analysis revealed no reversion of the glycine residues in the vpu sequences isolated from this macaque. These results contrast with those from four macaques inoculated with the parental pathogenic SHIV(KU-1bMC33), all of which developed severe CD4(+) T cell loss within 1 month after inoculation. Taken together, these results indicate that casein kinase II phosphorylation sites of Vpu contributes to the pathogenicity of the SHIV(KU-1bMC33) and suggest that the SHIV(KU-1bMC33)/pig-tailed macaque model will be useful in analyzing amino acids/domains of Vpu that contribute to the pathogenesis of HIV-1.  相似文献   
76.
The molecular basis for the resistance of serogroup B Neisseria meningitidis to the bactericidal activity of normal human sera (NHS) was examined with a NHS-resistant, invasive serogroup B meningococcal isolate and genetically and structurally defined capsule-, lipooligosaccharide (LOS)-, and sialylation-altered mutants of the wild-type strain. Expression of the (α2→8)-linked polysialic acid serogroup B capsule was essential for meningococcal resistance to NHS. The very NHS-sensitive phenotype of acapsular mutants (99.9 to 100% killed in 10, 25, and 50% NHS) was not rescued by complete LOS sialylation or changes in LOS structure. However, expression of the capsule was necessary but not sufficient for a fully NHS-resistant phenotype. In an encapsulated background, loss of LOS sialylation by interrupting the α2,3 sialyltransferase gene, lst, increased sensitivity to 50% NHS. In contrast, replacement of the lacto-N-neotetraose α-chain (Galβ1-4GlcNAcβ1-3Galβ1-4Glc) with glucose extensions (GlcN) in a galE mutant resulted in a strain resistant to killing by 50% NHS at all time points. Encapsulated meningococci expressing a Hep2(GlcNAc)→KDO2→lipid A LOS without an α-chain demonstrated enhanced sensitivity to 50% NHS (98% killed at 30 min) mediated through the antibody-dependent classical complement pathway. Encapsulated LOS mutants expressing truncated Hep2→KDO2→lipid A and KDO2→lipid A structures were also sensitive to 50% NHS (98 to 100% killed at 30 min) but, unlike the wild-type strain and mutants with larger oligosaccharide structures, they were killed by hypogammaglobulinemic sera. These data indicate that encapsulation is essential but that the LOS structure contributes to the ability of serogroup B N. meningitidis to resist the bactericidal activity of NHS.Serogroup B Neisseria meningitidis (the meningococcus) is an obligate human pathogen and remains a leading cause of fulminant septicemia and meningitis. In addition to sporadic outbreaks, large epidemics of serogroup B meningococcal disease continue to occur in many parts of the world, including South America, the United States Pacific Northwest, Western Europe, and New Zealand (4, 22). After penetrating upper respiratory tract mucosal surfaces, N. meningitidis must survive and multiply in the bloodstream to cause sepsis, meningitis, and other manifestations of invasive meningococcal disease. A major mechanism inhibiting or preventing the multiplication of meningococci in the blood is the complement-mediated bactericidal activity of human sera (17, 39). The importance of this activity in the prevention of systemic meningococcal disease is reinforced by host factors that alter bactericidal activity and increase the risk for development of invasive disease. These factors include the absence of bactericidal antibodies against meningococci (17, 18, 45), deficiencies in the complement cascade (13), and the presence of blocking immunoglobulin A antibodies that inhibit the bactericidal activity of human sera (19). The bactericidal activity of human sera against meningococci is also used as a surrogate marker for assessing meningococcal vaccine efficacy.Meningococci have evolved mechanisms that protect them from the bactericidal activity of human sera. Invasive serogroup B meningococcal strains recovered from blood and cerebrospinal fluid often resist being killed by human sera (48). The molecular basis for resistance has been attributed to the expression by this organism of an (α2→8)-linked polysialic acid capsule and a short-chained lipooligosaccharide (LOS) with terminal sialic acid residues (23, 34, 35). Meningococci isolated from the bloodstream in invasive disease, in contrast to nasopharyngeal isolates, are heavily encapsulated (9) and express the L3,7,9 LOS immunotypes (28). These immunotypes have a lacto-N-neotetraose originating from HepI of the inner core, which may be terminally sialylated (34, 62). However, the experimental data defining the precise contributions of the capsule, LOS sialylation, and LOS structure to the ability of serogroup B meningococci to resist the bactericidal activity of human sera is conflicting (11, 15, 20, 21, 27, 37, 6365).LOS epitopes are immunogenic in infants and children and induce protective bactericidal antibodies in convalescent sera (10, 12). These bactericidal LOS antibodies appear to be directed at conserved low-molecular-weight LOS epitopes (10, 12). LOS is also a component of new serogroup B outer membrane vesicle (OMV) vaccines and is proposed as a basis for other new meningococcal vaccines (13, 50). Although changes in the structure of LOS are known to influence the amount and epitopes of bactericidal and other functional antibodies elicited by OMV vaccines (2), the precise LOS structure(s) to include in these and other LOS-containing meningococcal vaccines is uncertain.To help understand the basis for meningococcal survival following mucosal invasion and to facilitate development of meningococcal vaccines which may contain LOS, we created a series of genetically and structurally defined capsule-, sialylation-, and LOS-altered mutants of the serogroup B meningococcal strain NMB. We used these mutants to study the contributions of the capsule, LOS sialylation, and changes in LOS structure to meningococcal resistance to the bactericidal activity of normal human sera (NHS).  相似文献   
77.
The tumour suppressor gene PTEN , which maps to 10q23.3 and encodes a 403 amino acid dual specificity phosphatase (protein tyrosine phosphatase; PTPase), was shown recently to play a broad role in human malignancy. Somatic PTEN deletions and mutations were observed in sporadic breast, brain, prostate and kidney cancer cell lines and in several primary tumours such as endometrial carcinomas, malignant melanoma and thyroid tumours. In addition, PTEN was identified as the susceptibility gene for two hamartoma syndromes: Cowden disease (CD; MIM 158350) and Bannayan-Zonana (BZS) or Ruvalcaba-Riley-Smith syndrome (MIM 153480). Constitutive DNA from 37 CD families and seven BZS families was screened for germline PTEN mutations. PTEN mutations were identified in 30 of 37 (81%) CD families, including missense and nonsense point mutations, deletions, insertions, a deletion/insertion and splice site mutations. These mutations were scattered over the entire length of PTEN , with the exception of the first, fourth and last exons. A 'hot spot' for PTEN mutation in CD was identified in exon 5 that contains the PTPase core motif, with 13 of 30 (43%) CD mutations identified in this exon. Seven of 30 (23%) were within the core motif, the majority (five of seven) of which were missense mutations, possibly pointing to the functional significance of this region. Germline PTEN mutations were identified in four of seven (57%) BZS families studied. Interestingly, none of these mutations was observed in the PTPase core motif. It is also worthy of note that a single nonsense point mutation, R233X, was observed in the germline DNA from two unrelated CD families and one BZS family. Genotype-phenotype studies were not performed on this small group of BZS families. However, genotype-phenotype analysis inthe group of CD families revealed two possible associations worthy of follow-up in independent analyses. The first was an association noted in the group of CD families with breast disease. A correlation was observed between the presence/absence of a PTEN mutation and the type of breast involvement (unaffected versus benign versus malignant). Specifically and more directly, an association was also observed between the presence of a PTEN mutation and malignant breast disease. Secondly, there appeared to be an interdependent association between mutations upstream and within the PTPase core motif, the core motif containing the majority of missense mutations, and the involvement of all major organ systems (central nervous system, thyroid, breast, skin and gastrointestinal tract). However, these observations would need to be confirmed by studying a larger number of CD families.   相似文献   
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号