首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   31篇
耳鼻咽喉   2篇
儿科学   6篇
妇产科学   13篇
基础医学   68篇
口腔科学   4篇
临床医学   51篇
内科学   40篇
皮肤病学   1篇
神经病学   54篇
特种医学   3篇
外科学   31篇
预防医学   13篇
眼科学   5篇
药学   35篇
肿瘤学   17篇
  2023年   2篇
  2022年   8篇
  2021年   15篇
  2020年   8篇
  2019年   13篇
  2018年   9篇
  2017年   8篇
  2016年   9篇
  2015年   10篇
  2014年   11篇
  2013年   11篇
  2012年   22篇
  2011年   24篇
  2010年   12篇
  2009年   8篇
  2008年   12篇
  2007年   10篇
  2006年   14篇
  2005年   16篇
  2004年   13篇
  2003年   11篇
  2002年   12篇
  2001年   6篇
  2000年   6篇
  1999年   9篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1992年   2篇
  1991年   4篇
  1990年   7篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1978年   5篇
  1976年   6篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1969年   2篇
排序方式: 共有343条查询结果,搜索用时 62 毫秒
61.
62.
For the purpose of development of orally active peptide therapeutics targeting NFκB for treatment of inflammatory bowel disease (IBD), two major barriers in oral delivery of therapeutic peptides, metabolic lability and tissue impermeability, were circumvented by introduction of a colon-targeted delivery system and cell permeable peptides (CPP) to NFκB inhibitory peptides (NIP). Suppression of NFκB activation was compared following treatment with various CPP conjugated NIPs (CPP-NIP). The most potent CPP-NIP was loaded in a capsule coated with a colon specific polymer, which was administered orally to colitic rats. The anti-inflammatory activity of the colon-targeted CPP-NIP was evaluated by measuring inflammatory indices in the inflamed colonic tissue. For confirmation of the local action of the CPP-NIP, the same experiment was done after rectal administration. Tissue permeability of the CPP-NIP was examined microscopically and spectrophotometrically using FITC-labeled CPP-NIP (CPP-NIP-FITC). NEMO binding domain peptide (NBD, TALDWSWLQTE) fused with a cell permeable peptide CTP (YGRRARRRARR), CTP-NBD, was most potent in inhibiting NFκB activity in cells. Colon-targeted CTP-NBD, but not colon-targeted NBD and CTP-NBD in an enteric capsule, ameliorated the colonic injury, which was in parallel with decrease in MPO activity and the levels of inflammatory mediators. Intracolonic treatment with CTP-NBD alleviated rat colitis and improved all the inflammatory indicators. CTP-NBD-FITC was detected at much greater level in the inflamed tissue than was NBD-FITC. Taken together, introduction of cell permeability and colon targetability to NIP may be a feasible strategy for an orally active peptide therapy for treatment of IBD.  相似文献   
63.
Fatty acid 2-hydroxylase (FA2H) is responsible for the synthesis of myelin galactolipids containing hydroxy fatty acid (hFA) as the N-acyl chain. Mutations in the FA2H gene cause leukodystrophy, spastic paraplegia, and neurodegeneration with brain iron accumulation. Using the Cre-lox system, we developed two types of mouse mutants, Fa2h(-/-) mice (Fa2h deleted in all cells by germline deletion) and Fa2h(flox/flox) Cnp1-Cre mice (Fa2h deleted only in oligodendrocytes and Schwann cells). We found significant demyelination, profound axonal loss, and abnormally enlarged axons in the CNS of Fa2h(-/-) mice at 12 months of age, while structure and function of peripheral nerves were largely unaffected. Fa2h(-/-) mice also exhibited histological and functional disruption in the cerebellum at 12 months of age. In a time course study, significant deterioration of cerebellar function was first detected at 7 months of age. Further behavioral assessments in water T-maze and Morris water maze tasks revealed significant deficits in spatial learning and memory at 4 months of age. These data suggest that various regions of the CNS are functionally compromised in young adult Fa2h(-/-) mice. The cerebellar deficits in 12-month-old Fa2h(flox/flox) Cnp1-Cre mice were indistinguishable from Fa2h(-/-) mice, indicating that these phenotypes likely stem from the lack of myelin hFA-galactolipids. In contrast, Fa2h(flox/flox) Cnp1-Cre mice did not show reduced performance in water maze tasks, indicating that oligodendrocytes are not involved in the learning and memory deficits found in Fa2h(-/-) mice. These findings provide the first evidence that FA2H has an important function outside of oligodendrocytes in the CNS.  相似文献   
64.
65.
Aim: Neonatal hypoxic ischemic encephalopathy (HIE) patients are at times accompanied by persistent pulmonary hypertension (PPHN), which is by itself another risk factor of adverse outcomes. We aimed to assess the outcome of therapeutic hypothermia (TH) in these patients whom we managed to reverse the shunt flow, as they are expected to be at much higher risk of adverse neurodevelopmental outcome.

Methods: We reviewed the medical records of 116 HIE infants (13 with PPHN and 103 without PPHN) who underwent TH between 2012 and 2016. We analyzed the short-term hospital outcomes and brain study results (electroencephalogram and magnetic resonance imaging) of TH in these patients.

Results: While infants with PPHN were significantly more likely to be outborn or have meconium aspiration syndrome, and required a longer duration of inotrope and intensive care support, electroencephalographic and brain magnetic resonance findings did not significantly differ according to PPHN status.

Conclusion: Based on our study, the hospital outcomes of infants with HIE accompanied by reversible PPHN who underwent TH were in general not significantly graver than those not accompanied by PPHN. Our results suggest that undergoing TH may be more beneficial in HIE infants with PPHN and the risks for possible adverse effects may not be as so high.  相似文献   

66.
67.
We have developed a new model of cryptogenic infantile spasms with prenatal betamethasone brain priming to increase susceptibility to development-specific spasms triggered by N-methyl-d-aspartate (NMDA). A recent clinical study linked severe prenatal stress to increased risk for development of infantile spasms. Here, we determined whether prenatal restraint stress (2 × 45 min) in rats on gestational day 15 would increase susceptibility to develop spasms on postnatal day 15. Prenatal stress significantly accelerated onset and increased number of NMDA-triggered spasms compared to handled controls. A single adrenocorticotropic hormone (ACTH or corticotropin) dose delivered acutely had no effects, whereas long-term (3 day) ACTH pretreatment significantly increased latency to onset and decreased number of spasms (an effect similar to that in the human condition). Our data support the notion that extra care should be provided during pregnancy to minimize stress.  相似文献   
68.
Resistance of Gram-positive pathogens to first-line antimicrobial agents has been increasing in many parts of the world. We compared the in vitro activities of torezolid with those of other antimicrobial agents, including linezolid, against clinical isolates of major aerobic and anaerobic bacteria. Torezolid had an MIC90 of ≤0.5 μg/ml for the Gram-positive bacterial isolates tested and was more potent than either linezolid or vancomycin.Antimicrobial resistance in Gram-positive cocci has become a major problem in recent years. Oxazolidinones, a new therapeutic class of synthetic drugs, are active against Gram-positive pathogens. Linezolid, the only marketed oxazolidinone, inhibits the initiation of bacterial protein translation by binding to the 23S rRNA peptidyl transferase region (15). The widely used drug linezolid is effective against most Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus spp., and penicillin-resistant Streptococcus pneumoniae (1, 2). However, several recent studies have reported the emergence of linezolid-resistant staphylococci and enterococci in Brazil, China, France, Germany, Italy, and Sweden. The dominant resistance mechanisms are mutations of the 23S rRNA gene and the recently described mobile chloramphenicol-florfenicol resistance (cfr) methyltransferase gene (9).The antibacterial activity of oxazolidinones depends on their affinity for the site of action on the ribosome. Therefore, by modifying their chemical structure, novel oxazolidinones with improved antimicrobial activity can be obtained. Accordingly, it is important to find more useful and less toxic oxazolidinones. Torezolid [TR-700, DA-7157; R-3-(4-(2-(2-methyltetrazol-5-yl)pyridine-5-yl)-3-fluorophenyl)-5-hydroxymethyl oxazolidin-2-on] is the active moiety of the prodrug torezolid phosphate (TR-701, DA-7218) (Fig. (Fig.1).1). In a recent study, torezolid was 4- to 8-fold more active than linezolid against Gram-positive bacteria collected from the United States (3). In another study, torezolid demonstrated an 8- to 16-fold increase in potency against all of the linezolid-resistant isolates tested, including MRSA, MRSA carrying the mobile cfr methyltransferase gene, and vancomycin-resistant enterococci (14). However, as far as we know, the activities of torezolid against anaerobic bacteria have not been reported.Open in a separate windowFIG. 1.Chemical structure of torezolid.Human plasma protein binding of torezolid was about 80% (data not shown), and the MIC was unaffected by the presence of 20% human plasma (4). Torezolid has a better pharmacokinetic profile than linezolid. After oral administration of torezolid at 200 mg once a day, the maximum concentration of the drug in serum, half-life, and area under the curve were 2.0 μg/ml, 11.2 h, and 25.4 μg·h/ml, respectively (13). In another study, torezolid phosphate was safe and effective with once-daily 200-mg dosing over 5 to 7 days of treatment for severe complicated skin and skin structure infections caused by Gram-positive bacteria (16). In this study, we compared the in vitro activities of torezolid with those of other antimicrobial agents, including linezolid, against clinical isolates of major aerobic and anaerobic Gram-positive and Gram-negative bacteria.(Part of this study was presented at the 44th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, DC, 2004 [12]).Five hundred ten nonduplicate aerobic and anaerobic bacterial isolates were collected between 2002 and 2004 from patients at a South Korean tertiary-care hospital. The species were identified by conventional methods or by using either the ID 32 GN or the ATB 32A system (bioMérieux, Marcy-l''Etoile, France). Antimicrobial susceptibility was tested by the CLSI agar dilution method (5, 6, 7). The media used were Mueller-Hinton agar (Becton Dickinson, Sparks, MD) for testing of Staphylococcus spp., Enterococcus spp., and Moraxella catarrhalis; Mueller-Hinton agar supplemented with 5% sheep blood for Streptococcus spp.; Haemophilus test medium for Haemophilus influenzae; and brucella agar (Becton Dickinson) supplemented with 5 μg hemin, 1 μg vitamin K1 per ml, and 5% laked sheep blood for anaerobic bacteria.The antimicrobial agents used were torezolid and linezolid (Dong-A, Seoul, South Korea); erythromycin, tetracycline, oxacillin, penicillin G, and cefuroxime (Sigma Chemical, St. Louis, MO); piperacillin and tazobactam (Yuhan, Seoul, South Korea); azithromycin and sulbactam (Pfizer Korea, Seoul, South Korea); clindamycin (Korea Upjohn, Seoul, South Korea); levofloxacin (Daiichi, Tokyo, Japan); ampicillin, gentamicin, and chloramphenicol (Chong Kun Dang, Seoul, South Korea); cefotaxime (Han-Dok, Seoul, South Korea); cefoxitin and imipenem (Merck Sharp & Dohme, Rahway, NJ); cefotetan (Je Il, Seoul, South Korea); metronidazole (Choong Wae, Seoul, South Korea); trimethoprim and sulfamethoxazole (Dong Wha, Seoul, South Korea); cefaclor and vancomycin (Daewoong, Seoul, South Korea); and teicoplanin (Sanofi Aventis, Bridgewater, NJ).American Type Culture Collection strains of S. aureus (ATCC 29213), Enterococcus faecalis (ATCC 29212), S. pneumoniae (ATCC 49619), H. influenzae (ATCC 49247), Bacteroides fragilis (ATCC 25285), and Bacteroides thetaiotaomicron (ATCC 29741) were used as reference strains. The meningeal breakpoints of penicillin G and cefotaxime were used for S. pneumoniae.MRSA continues to be prevalent in South Korea, accounting for 64% of the S. aureus strains in one study (10). In this study, all of the isolates of staphylococci tested were inhibited by torezolid at ≤1 μg/ml and the MIC for 90% of the strains tested (MIC90) was 4- to 8-fold lower than that of linezolid (Table (Table1).1). The majority of the MRSA isolates was resistant to erythromycin, clindamycin, gentamicin, levofloxacin, and tetracycline.

TABLE 1.

Comparative antimicrobial activities of torezolid and other antimicrobial agents against aerobic and anaerobic bacteria
Organism (no. of isolates tested) and antimicrobial agentBreakpoint (μg/ml)f
MIC (μg/ml)
Susceptibility (%)f
SIRRange50%90%SIR
Methicillin-susceptible S. aureus (30)
    TorezolidNAgNANA0.5-10.50.5NANANA
    Linezolid≤4≥82-444100NA0
    Erythromycin≤0.51-4≥80.5->1280.5>12863730
    Clindamycin≤0.51-2≥4≤0.06-10.250.259730
    Cotrimoxazole≤2/38≥4/76≤0.06-320.25290NA10
    Gentamicin≤48≥160.06->1280.512870327
    Levofloxacin≤12≥40.5-80.519703
    Tetracycline≤48≥160.25-640.53283017
    Oxacillin≤2≥40.06-0.50.50.5100NA0
    Vancomycin≤24-8≥160.5-10.5110000
MRSA (30)
    TorezolidNANANA0.50.50.5NANANA
    Linezolid≤4≥82-424100NA0
    Erythromycin≤0.51-4≥80.5->128>128>1283393
    Clindamycin≤0.51-2≥40.25->128>128>12817083
    Cotrimoxazole≤2/38≥4/760.25->1280.5>12873NA27
    Gentamicin≤48≥160.25->12864>12813087
    Levofloxacin≤12≥40.5->12816>12817083
    Tetracycline≤48≥160.5-128646433067
    Oxacillin≤2≥432->128>128>1280NA100
    Vancomycin≤24-8≥160.5-21110000
Methicillin-susceptible, coagulase negative staphylococci (29)
    TorezolidNANANA0.25-0.50.50.5NANANA
    Linezolid≤4≥81-424100NA0
    Erythromycin≤0.51-4≥80.25->1280.512876024
    Clindamycin≤0.51-2≥40.12->1280.2519073
    Cotrimoxazole≤2/38≥4/76≤0.06-320.251690NA10
    Gentamicin≤48≥160.06-1280.126469724
    Levofloxacin≤12≥40.25-320.50.59703
    Tetracycline≤48≥160.5-1280.53276024
    Oxacillin≤0.25≥0.50.06-0.250.120.25100NA0
    Vancomycin≤24-8≥160.5-21110000
Methicillin-resistant, coagulase negative staphylococci (26)
    TorezolidNANANA0.12-0.50.50.5NANANA
    Linezolid≤4≥80.5-422100NA0
    Erythromycin≤0.51-4≥8≤0.06->1286412842058
    Clindamycin≤0.51-2≥40.12->1280.25>12862038
    Cotrimoxazole≤2/38≥4/76≤0.06-3223250NA50
    Gentamicin≤48≥160.06-1281664271558
    Levofloxacin≤12≥40.12-160.516731215
    Tetracycline≤48≥160.5->128412869427
    Oxacillin≤0.25≥0.50.5->1284640NA100
    Vancomycin≤24-8≥160.25-21210000
Vancomycin-susceptible Enterococcus faecalis (49)
    TorezolidNANANA0.12-0.50.250.5NANANA
    Linezolid≤24≥80.5-22210000
    Ampicillin≤8≥160.25-814100NA0
    Erythromycin≤0.51-4≥80.12->1284>12894249
    Levofloxacin≤24≥80.5-6426469031
    Tetracycline≤48≥160.5-128646420080
    Vancomycin≤48-16≥321-42210000
    Teicoplanin≤816≥32≤0.12-0.50.250.510000
Vancomycin-resistant E. faecalis (12)
    TorezolidNANANA0.25-0.50.250.5NANANA
    Linezolid≤24≥80.5-11110000
    Ampicillin≤8≥161-424100NA0
    Erythromycin≤0.51-4≥8>128>128>12800100
    Levofloxacin≤24≥816-128646400100
    Tetracycline≤48≥160.5-6432648092
    Vancomycin≤48-16≥32>128>128>12800100
    Teicoplanin≤816≥3232-128646400100
Vancomycin-susceptible Enterococcus faecium (30)
    TorezolidNANANA0.06-0.250.250.25NANANA
    Linezolid≤24≥80.5-22210000
    Ampicillin≤8≥161->128>128>1287NA93
    Erythromycin≤0.51-4≥80.25->128>128>1283790
    Levofloxacin≤24≥82-12864643790
    Tetracycline≤48≥160.12-320.519703
    Vancomycin≤48-16≥320.5-40.50.510000
    Teicoplanin≤816≥320.25-20.50.510000
Vancomycin-resistant E. faecium (29)
    TorezolidNANANA0.06-0.250.120.25NANANA
    Linezolid≤24≥80.5-11110000
    Ampicillin≤8≥1664->128>128>1280NA100
    Erythromycin≤0.51-4≥864->128128>12800100
    Levofloxacin≤24≥816-1286412800100
    Tetracycline≤48≥16≤0.06-1280.2512890010
    Vancomycin≤48-16≥3264->128128>12800100
    Teicoplanin≤816≥322-641664213148
S. pneumoniae (29)
    TorezolidNANANA0.12-0.50.250.25NANANA
    Linezolid≤20.5-211100NANA
    Penicillin G≤0.06≥0.120.015-21217NA83
    Cefotaximec≤0.51≥20.015-212315514
    Clindamycin≤0.250.5≥10.25->128>128>12828072
    Erythromycin≤0.250.5≥10.25->128>128>12814086
    Cotrimoxazole≤0.5/9.51/19-2/38≥4/760.5-1281664241066
    Levofloxacin≤24≥81-22210000
    Tetracycline≤24≥8≤0.12-32163210090
S. pyogenes (15)
    TorezolidNANANA0.06-0.250.120.25NANANA
    Linezolid≤21-212100NANA
    Penicillin G≤0.12≤0.008-0.0150.0150.015100NANA
    Cefotaxime≤0.5≤0.008-0.030.0150.03100NANA
    Clindamycin≤0.250.5≥10.12-0.250.120.2510000
    Erythromycin≤0.250.5≥10.12-0.250.120.2510000
    Levofloxacin≤24≥80.5-41480200
S. agalactiae (15)
    TorezolidNANANA0.12-0.50.250.5NANANA
    Linezolid≤21-222100NANA
    Penicillin G≤0.120.03-0.060.060.06100NANA
    Cefotaxime≤0.50.03-0.060.060.06100NANA
    Clindamycin≤0.250.5≥10.25->1280.25>12853047
    Erythromycin≤0.250.5≥10.25->1280.5>128134740
    Levofloxacin≤24≥81-21210000
M. catarrhalis (27)
    TorezolidNANANA0.5-211NANANA
    LinezolidNANANA2-844NANANA
    Penicillin GNANANA0.03-321632NANANA
    Cefaclor≤816≥320.25-32289604
    Clindamycin≤0.51-2≥41-42405941
    Erythromycin≤0.51-4≥80.12-0.50.250.510000
    Levofloxacin≤20.060.060.06100NANA
    Tetracycline≤24≥80.25-160.50.59604
H. influenzae (25)
    TorezolidNANANA2-1624NANANA
    LinezolidNANANA4-16816NANANA
    Ampicillin≤12≥40.5->128>128>12816876
    Ampicillin-sulbactam≤2/1≥4/20.5-84836NA64
    Cefaclor≤816≥322->1284>12860040
    Cefuroxime≤48≥160.25->1281>12880416
    Cefotaxime≤2≤0.008-0.50.030.5100NANA
    Azithromycin≤42-444100NANA
    Cotrimoxazole≤0.5/9.51/19-2/38≥4/76≤0.06-3243248052
    Levofloxacin≤20.015-0.50.030.06100NANA
    Tetracycline≤24≥80.25-320.5884412
Peptostreptococcus spp. (59)a
    TorezolidNANANA0.03-0.250.060.25NANANA
    LinezolidNANANA0.25-20.51NANANA
    Ampicillin≤0.51≥2≤0.06-160.1219028
    Ampicillin-sulbactam≤8/416/8≥32/16≤0.06-80.12110000
    Piperacillin≤3264≥128≤0.06-16≤0.06810000
    Piperacillin-tazobactam≤32/464/4≥128/4≤0.06-16≤0.06810000
    Cefoxitin≤1632≥64≤0.06-160.25410000
    Cefotetan≤1632≥64≤0.06-1280.5169227
    Imipenem≤48≥16≤0.06-1≤0.060.1210000
    Clindamycin≤24≥8≤0.06->1280.56480020
    Metronidazole≤816≥32≤0.06-41210000
    VancomycinNANANA≤0.12-10.250.5NANANA
Clostridium perfringens (15)
    TorezolidNANANA0.12-0.250.250.25NANANA
    LinezolidNANANA1-222NANANA
    Ampicillin≤0.51≥2≤0.06-0.5≤0.060.1210000
    Ampicillin-sulbactam≤8/416/8≥32/16≤0.06-0.5≤0.060.2510000
    Piperacillin≤3264≥128≤0.06-1≤0.060.2510000
    Piperacillin-tazobactam≤32/464/4≥128/4≤0.06≤0.06≤0.0610000
    Cefoxitin≤1632≥640.25-10.5110000
    Cefotetan≤1632≥64≤0.06-0.5≤0.060.1210000
    Imipenem≤48≥16≤0.06-0.12≤0.06≤0.0610000
    Clindamycin≤24≥8≤0.06-21210000
    Metronidazole≤816≥321-44410000
    VancomycinNANANA0.5-20.50.5NANANA
Other Clostridium spp. (15)b
    TorezolidNANANA≤0.06-0.250.250.25NANANA
    LinezolidNANANA0.5-424NANANA
    Ampicillin≤0.51≥2≤0.06-10.25187130
    Ampicillin-sulbactam≤8/416/8≥32/16≤0.06-20.25110000
    Piperacillin≤3264≥128≤0.06-161810000
    Piperacillin-tazobactam≤32/464/4≥128/4≤0.06-161810000
    Cefoxitin≤1632≥640.25-12886460040
    Cefotetan≤1632≥64≤0.06->1282>12853740
    Imipenem≤48≥16≤0.06-41410000
    Clindamycin≤24≥8≤0.06->1281>128531333
    Metronidazole≤816≥320.12-16489370
    VancomycinNANANA0.25-848NANANA
Other anaerobic Gram-positive bacilli (13)c
    TorezolidNANANA0.06-0.50.060.5NANANA
    LinezolidNANANA≤0.06-40.52NANANA
    Ampicillin≤0.51≥2≤0.06-2≤0.0618588
    Ampicillin-sulbactam≤8/416/8≥32/16≤0.06-20.12110000
    Piperacillin≤3264≥128≤0.06-80.5810000
    Piperacillin-tazobactam≤32/464/4≥128/4≤0.06-8≤0.06810000
    Cefoxitin≤1632≥64≤0.06->1281>12810000
    Cefotetan≤1632≥640.12->1284>12862831
    Imipenem≤48≥16≤0.06-20.12210000
    Clindamycin≤24≥8≤0.06-4≤0.0629280
    Metronidazole≤816≥320.25->128>128>12838854
    VancomycinNANANA0.25->320.5>32NANANA
B. fragilis (30)
    TorezolidNANANA1-422NANANA
    LinezolidNANANA2-444NANANA
    Ampicillin≤0.51≥216->12832>12800100
    Ampicillin-sulbactam≤8/416/8≥32/161-3221683710
    Piperacillin≤3264≥1284->25632256531730
    Piperacillin-tazobactam≤32/464/4≥128/40.12-80.25110000
    Cefoxitin≤1632≥644-648328777
    Cefotetan≤1632≥644-12883283710
    Imipenem≤48≥16≤0.06-40.25110000
    Clindamycin≤24≥8≤0.06->128128>12843057
    Metronidazole≤816≥320.5-84410000
B. thetaiotaomicron (15)
    TorezolidNANANA1-222NANANA
    LinezolidNANANA444NANANA
    Ampicillin≤0.51≥216->12832>12800100
    Ampicillin-sulbactam≤8/416/8≥32/161-32132731313
    Piperacillin≤3264≥12816->25632>25673027
    Piperacillin-tazobactam≤32/464/4≥128/42-164810000
    Cefoxitin≤1632≥6416-32163273270
    Cefotetan≤1632≥6432->128128>12801387
    Imipenem≤48≥160.12-20.25210000
    Clindamycin≤24≥82->1288>12874053
    Metronidazole≤816≥322-44410000
Other Bacteroides spp. (14)d
    TorezolidNANANA1-412NANANA
    LinezolidNANANA1-424NANANA
    Ampicillin≤0.51≥22->128>128>12800100
    Ampicillin-sulbactam≤8/416/8≥32/161-32832572914
    Piperacillin≤3264≥1282->25664>256431443
    Piperacillin-tazobactam≤32/464/4≥128/42-164810000
    Cefoxitin≤1632≥644-64163279.147
    Cefotetan≤1632≥644->12864>128291457
    Imipenem≤48≥16≤0.06-20.5110000
    Clindamycin≤24≥84->128>128>1280793
    Metronidazole≤816≥32≤0.25-44410000
Other anaerobic Gram-negative rods (27)e
    TorezolidNANANA0.03-40.252NANANA
    LinezolidNANANA≤0.12-814NANANA
    Ampicillin≤0.51≥2≤0.03-128164223344
    Ampicillin-sulbactam≤8/416/8≥32/16≤0.03-41410000
    Piperacillin≤3264≥128≤0.06-1284329344
    Piperacillin-tazobactam≤32/464/4≥128/4≤0.06-8≤0.06410000
    Cefoxitin≤1632≥64≤0.06-81410000
    Cefotetan≤1632≥64≤0.06-322169370
    Imipenem≤48≥16≤0.06-1≤0.06110000
    Clindamycin≤24≥8≤0.06->128≤0.066478715
    Metronidazole≤816≥32≤0.06-40.5410000
    Chloramphenicol≤816≥320.5-82410000
Open in a separate windowaFinegoldia magna (19 strains), Peptoniphilus asaccharolyticus (15 strains), Peptostreptococcus anaerobius (12 strains), Peptostreptococcus micros (7 strains), and Anaerococcus prevotii (6 strains).bClostridium clostridiiforme (3 strains), C. sordellii (1 strain), C. innocuum (5 strains), C. tertium (2 strains), C. ramosum (2 strains), C. sporogenes (1 strain), and C. bifermentans (1 strain).cBifidobacterium adolescentis (2 strains), Propionibacterium acnes (4 strains), Eubacterium lentum (3 strains), Lactobacillus acidophilus (2 strains), and Actinomyces sp. (2 strains).dBacteroides distasonis (5 strains), B. vulgatus (7 strains), and B. ovatus (2 strains).ePrevotella bivia (6 strains), P. buccae (3 strains), P. intermedia (4 strains), P. oralis (2 strains), Fusobacterium mortiferum (3 strains), F. necrophorum (2 strains), F. varium (6 strains), and Fusobacterium sp. (1 strain).fS, susceptible; I, intermediate; R, resistant.gNA, not applicable.Vancomycin-resistant Enterococcus faecium has become prevalent in the United States (18). The vancomycin resistance rate of E. faecium has been 20% or higher in South Korean hospitals since 2003 (10). The MIC ranges of torezolid were 0.06 to 0.25 μg/ml for all of the enterococci, including vancomycin-resistant ones, while those of linezolid were 0.5 to 2 μg/ml (Table (Table1),1), which are similar to prior reports (8, 17). All of the isolates were susceptible to linezolid.Penicillin-nonsusceptible S. pneumoniae strains were very prevalent (69%) in South Korean hospitals in 2007, when the meningeal breakpoint was applied. In this study, most of the pneumococcal isolates tested were nonsusceptible to penicillin G or cefotaxime, but the MIC range of torezolid was 0.12 to 0.5 μg/ml and the MIC90 was 4-fold lower than that of linezolid (Table (Table1).1). All of the isolates of Streptococcus pyogenes and Streptococcus agalactiae were inhibited by torezolid at ≤0.5 μg/ml.β-Lactamase-producing M. catarrhalis and H. influenzae were prevalent in South Korea (11). The MIC ranges of torezolid for M. catarrhalis and H. influenzae were 0.5 to 2 and 2 to 16 μg/ml, respectively. The MIC90s for both of these organisms were 4-fold lower than those of linezolid.Intraabdominal and soft-tissue infections are often due to aerobic and anaerobic bacteria. Torezolid had excellent activity against Gram-positive anaerobes (Table (Table1).1). All of the peptostreptococci and anaerobic Gram-positive bacilli were inhibited by torezolid at ≤0.5 μg/ml, and the MIC90s for these organisms were 4- to 16-fold lower than those of linezolid. The MIC90 of torezolid, 2 μg/ml, for anaerobic Gram-negative bacilli, was slightly lower than that of linezolid, 4 μg/ml (Table (Table11).In conclusion, torezolid is a new antimicrobial agent with high in vitro activity against common aerobic and anaerobic Gram-positive bacteria, including multidrug-resistant isolates. Further studies are warranted to determine the clinical utility of torezolid as a therapeutic agent.  相似文献   
69.
70.
Role of p38 MAP kinase in the development of acute lung injury.   总被引:11,自引:0,他引:11  
Acute lung injury (ALI) is characterized by an intense pulmonary inflammatory response, in which neutrophils play a central role. The p38 mitogen-activated protein kinase pathway is involved in the regulation of stress-induced cellular functions and appears to be important in modulating neutrophil activation, particularly in response to endotoxin. Although p38 has potent effects on neutrophil functions under in vitro conditions, there is relatively little information concerning the role of p38 in affecting neutrophil-driven inflammatory responses in vivo. To examine this issue, we treated mice with the p38 inhibitor SB203580 and then examined parameters of neutrophil activation and acute lung injury after hemorrhage or endotoxemia. Although p38 was activated in lung neutrophils after hemorrhage or endotoxemia, inhibition of p38 did not decrease neutrophil accumulation in the lungs or the development of lung edema under these conditions. Similarly, the increased production of proinflammatory cytokines and activation of NF-kappaB in lung neutrophils induced by hemorrhage or endotoxemia was not diminished by p38 inhibition. These results indicate that p38 does not have a central role in the development of ALI after either hemorrhage or endotoxemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号