首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3256篇
  免费   260篇
  国内免费   17篇
耳鼻咽喉   13篇
儿科学   66篇
妇产科学   37篇
基础医学   605篇
口腔科学   24篇
临床医学   397篇
内科学   806篇
皮肤病学   78篇
神经病学   264篇
特种医学   39篇
外科学   340篇
综合类   3篇
一般理论   1篇
预防医学   250篇
眼科学   50篇
药学   251篇
中国医学   1篇
肿瘤学   308篇
  2023年   26篇
  2022年   45篇
  2021年   110篇
  2020年   58篇
  2019年   86篇
  2018年   114篇
  2017年   67篇
  2016年   94篇
  2015年   104篇
  2014年   130篇
  2013年   176篇
  2012年   276篇
  2011年   310篇
  2010年   159篇
  2009年   149篇
  2008年   251篇
  2007年   241篇
  2006年   236篇
  2005年   244篇
  2004年   216篇
  2003年   171篇
  2002年   165篇
  2001年   13篇
  2000年   5篇
  1999年   12篇
  1998年   20篇
  1997年   17篇
  1996年   8篇
  1995年   18篇
  1994年   5篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
排序方式: 共有3533条查询结果,搜索用时 15 毫秒
71.
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract and are often associated with KIT or PDGFRA gene mutations. GIST cells might arise from the interstitial cells of Cajal (ICCs) or from a mesenchymal precursor that is common to ICCs and smooth muscle cells (SMCs). Here, we analyzed the mRNA and protein expression of RNA-Binding Protein with Multiple Splicing-2 (RBPMS2), an early marker of gastrointestinal SMC precursors, in human GISTs (n = 23) by in situ hybridization, quantitative RT-PCR analysis and immunohistochemistry. The mean RBPMS2 mRNA level in GISTs was 42-fold higher than in control gastrointestinal samples (p < 0.001). RBPMS2 expression was not correlated with KIT and PDGFRA expression levels, but was higher in GISTs harboring KIT mutations than in tumors with wild type KIT and PDGFRA or in GISTs with PDGFRA mutations that were characterized by the lowest RBPMS2 levels. Moreover, RBPMS2 levels were 64-fold higher in GIST samples with high risk of aggressive behavior than in adult control gastrointestinal samples and 6.2-fold higher in high risk than in low risk GIST specimens. RBPMS2 protein level was high in 87% of the studied GISTs independently of their histological classification. Finally, by inhibiting the KIT signaling pathway in GIST882 cells, we show that RBPMS2 expression is independent of KIT activation. In conclusion, RBPMS2 is up-regulated in GISTs compared to normal adult gastrointestinal tissues, indicating that RBPMS2 might represent a new diagnostic marker for GISTs and a potential target for cancer therapy.  相似文献   
72.
The conversion of male germ cell chromatin to a nucleoprotamine structure is fundamental to the life cycle, yet the underlying molecular details remain obscure. Here we show that an essential step is the genome-wide incorporation of TH2B, a histone H2B variant of hitherto unknown function. Using mouse models in which TH2B is depleted or C-terminally modified, we show that TH2B directs the final transformation of dissociating nucleosomes into protamine-packed structures. Depletion of TH2B induces compensatory mechanisms that permit histone removal by up-regulating H2B and programming nucleosome instability through targeted histone modifications, including lysine crotonylation and arginine methylation. Furthermore, after fertilization, TH2B reassembles onto the male genome during protamine-to-histone exchange. Thus, TH2B is a unique histone variant that plays a key role in the histone-to-protamine packing of the male genome and guides genome-wide chromatin transitions that both precede and follow transmission of the male genome to the egg.  相似文献   
73.
Ouarhache  Maryem  Marquet  Sandrine  Frade  Amanda Farage  Ferreira  Ariela Mota  Ianni  Barbara  Almeida  Rafael Ribeiro  Nunes  Joao Paulo Silva  Ferreira  Ludmila Rodrigues Pinto  Rigaud  Vagner Oliveira-Carvalho  Cândido  Darlan  Mady  Charles  Zaniratto  Ricardo Costa Fernandes  Buck  Paula  Torres  Magali  Gallardo  Frederic  Andrieux  Pauline  Bydlowsky  Sergio  Levy  Debora  Abel  Laurent  Cardoso  Clareci Silva  Santos-Junior  Omar Ribeiro  Oliveira  Lea Campos  Oliveira  Claudia Di Lorenzo  Nunes  Maria Do Carmo  Cobat  Aurelie  Kalil  Jorge  Ribeiro  Antonio Luiz  Sabino  Ester Cerdeira  Cunha-Neto  Edecio  Chevillard  Christophe 《Journal of clinical immunology》2021,41(5):1048-1063
Abstract

Cardiomyopathies are an important cause of heart failure and sudden cardiac death. Little is known about the role of rare genetic variants in inflammatory cardiomyopathy. Chronic Chagas disease cardiomyopathy (CCC) is an inflammatory cardiomyopathy prevalent in Latin America, developing in 30% of the 6 million patients chronically infected by the protozoan Trypanosoma cruzi, while 60% remain free of heart disease (asymptomatic (ASY)). The cytokine interferon-γ and mitochondrial dysfunction are known to play a major pathogenetic role. Chagas disease provides a unique model to probe for genetic variants involved in inflammatory cardiomyopathy.

Methods

We used whole exome sequencing to study nuclear families containing multiple cases of Chagas disease. We searched for rare pathogenic variants shared by all family members with CCC but absent in infected ASY siblings and in unrelated ASY.

Results

We identified heterozygous, pathogenic variants linked to CCC in all tested families on 22 distinct genes, from which 20 were mitochondrial or inflammation-related – most of the latter involved in proinflammatory cytokine production. Significantly, incubation with IFN-γ on a human cardiomyocyte line treated with an inhibitor of dihydroorotate dehydrogenase brequinar (enzyme showing a loss-of-function variant in one family) markedly reduced mitochondrial membrane potential (ΔψM), indicating mitochondrial dysfunction.

Conclusion

Mitochondrial dysfunction and inflammation may be genetically determined in CCC, driven by rare genetic variants. We hypothesize that CCC-linked genetic variants increase mitochondrial susceptibility to IFN-γ-induced damage in the myocardium, leading to the cardiomyopathy phenotype in Chagas disease. This mechanism may also be operative in other inflammatory cardiomyopathies.

  相似文献   
74.
75.
76.
77.
78.
79.
Fifteen carbapenemase-producing Enterobacteriaceae isolates and 12 carbapenemase-producing Pseudomonas aeruginosa isolates were recovered from patients hospitalized between August 2011 and March 2013 at the Hospital of Infectious Disease, Cluj-Napoca, Romania. One KPC-, nine NDM-1-, four OXA-48-, and one VIM-4-producing Enterobacteriaceae isolates along with 11 VIM-2-producing and one IMP-13-producing P. aeruginosa isolates were recovered from clinical samples. All carbapenemase genes were located on self-conjugative plasmids and were associated with other resistance determinants, including extended-spectrum β-lactamases and RmtC methylases.  相似文献   
80.
Ischemia/reperfusion injury is a major cause of acute kidney injury. Improving renal repair would represent a therapeutic strategy to prevent renal dysfunction. The innate immune receptor Nlrp3 is involved in tissue injury, inflammation, and fibrosis; however, its role in repair after ischemia/reperfusion is unknown. We address the role of Nlrp3 in the repair phase of renal ischemia/reperfusion and investigate the relative contribution of leukocyte- versus renal-associated Nlrp3 by studying bone marrow chimeric mice. We found that Nlrp3 expression was most profound during the repair phase. Although Nlrp3 expression was primarily expressed by leukocytes, both leukocyte- and renal-associated Nlrp3 was detrimental to renal function after ischemia/reperfusion. The Nlrp3-dependent cytokine IL-1β remained unchanged in kidneys of all mice. Leukocyte-associated Nlrp3 negatively affected tubular apoptosis in mice that lacked Nlrp3 expression on leukocytes, which correlated with reduced macrophage influx. Nlrp3-deficient (Nlrp3KO) mice with wild-type bone marrow showed an improved repair response, as seen by a profound increase in proliferating tubular epithelium, which coincided with increased hepatocyte growth factor expression. In addition, Nlrp3KO tubular epithelial cells had an increased repair response in vitro, as seen by an increased ability of an epithelial monolayer to restore its structural integrity. In conclusion, Nlrp3 shows a tissue-specific role in which leukocyte-associated Nlrp3 is associated with tubular apoptosis, whereas renal-associated Nlrp3 impaired wound healing.Ischemia/reperfusion (IR) injury is a major cause of acute kidney injury1 and increases the risk of developing chronic kidney disease (CKD).2 After injury, wounded tissue organizes an efficient response that aims to combat infections, clear cell debris, re-establish cell number, and reorganize tissue architecture. First, necrotic tissue releases danger-associated molecular patterns, such as high-mobility group box-13 or mitochondrial DNA,4 which leads to chemokine secretion5 and a subsequent influx of leukocytes. Second, neutrophils and macrophages clear cellular debris but also increase renal damage because depletion of neutrophils6 or macrophages within 48 hours of IR will reduce renal damage.7 At approximately 72 hours of reperfusion, the inflammatory phase transforms into the repair phase and is characterized by surviving tubular epithelial cells (TECs) that dedifferentiate, migrate, and proliferate to restore renal function.8Previously, we have shown that Toll-like receptor (TLR) 2 and TLR4 play a detrimental role after acute renal IR injury.9, 10, 11 In addition, TLR2 appeared also pivotal in mediating tubular repair in vitro after cisplatin-induced injury,12 indicating a dual role for TLR2. The cytosolic innate immune receptor Nlrp3 is able to sense cellular damage13 and mediates renal inflammation and pathological characteristics after IR14, 15, 16 or nephrocalcinosis.17 Next to the detrimental role of Nlrp3 in different renal disease models and consistent with the dual role of TLR2, Nlrp3 was shown to protect against loss of colonic epithelial integrity.18 We, therefore, speculate that Nlrp3, which contributes to sterile renal inflammation during acute renal IR injury, might also drive subsequent tubular repair.To test this hypothesis, we investigated the role of leukocyte- versus renal-associated Nlrp3 with respect to tissue repair after renal IR. We observed that both renal- and leukocyte-associated Nlrp3s are detrimental to renal function after renal IR injury; however, this is through different mechanisms. Leukocyte-associated Nlrp3 is related to increased tubular epithelial apoptosis, whereas renal-associated Nlrp3 impairs the tubular epithelial repair response. Our data suggest Nlrp3 as a negative regulator of resident tubular cell proliferation in addition to its detrimental role in renal fibrosis and inflammation.14, 19  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号