首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1346篇
  免费   78篇
  国内免费   9篇
耳鼻咽喉   1篇
儿科学   18篇
妇产科学   27篇
基础医学   295篇
口腔科学   4篇
临床医学   125篇
内科学   321篇
皮肤病学   9篇
神经病学   192篇
特种医学   30篇
外科学   103篇
综合类   4篇
现状与发展   1篇
一般理论   2篇
预防医学   58篇
眼科学   13篇
药学   100篇
中国医学   5篇
肿瘤学   125篇
  2024年   3篇
  2023年   41篇
  2022年   56篇
  2021年   134篇
  2020年   47篇
  2019年   71篇
  2018年   60篇
  2017年   31篇
  2016年   44篇
  2015年   62篇
  2014年   55篇
  2013年   66篇
  2012年   85篇
  2011年   96篇
  2010年   56篇
  2009年   43篇
  2008年   72篇
  2007年   78篇
  2006年   78篇
  2005年   81篇
  2004年   55篇
  2003年   35篇
  2002年   23篇
  2001年   7篇
  2000年   11篇
  1999年   8篇
  1998年   12篇
  1997年   2篇
  1996年   7篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1987年   1篇
  1982年   1篇
  1978年   1篇
排序方式: 共有1433条查询结果,搜索用时 31 毫秒
51.
52.
53.
The HCN4 gene encodes a subunit of the hyperpolarization‐activated cyclic nucleotide‐gated channel, type 4 that is essential for the proper generation of pacemaker potentials in the sinoatrial node. The HCN4 gene is often present in targeted genetic testing panels for various cardiac conduction system disorders and there are several reports of HCN4 variants associated with conduction disorders. Here, we report the in vitro functional characterization of four rare variants of uncertain significance (VUS) in HCN4, identified through testing a cohort of 296 sudden unexpected natural deaths. The variants are all missense alterations, leading to single amino acid changes: p.E66Q in the N‐terminus, p.D546N in the C‐linker domain, and both p.S935Y and p.R1044Q in the C‐terminus distal to the CNBD. We also identified a likely benign variant, p. P1063T, which has a high minor allele frequency in the gnomAD, which is utilized here as a negative control. Three of the HCN4 VUS (p.E66Q, p.S935Y, and p.R1044Q) had electrophysiological characteristics similar to the wild‐type channel, suggesting that these variants are benign. In contrast, the p.D546N variant in the C‐linker domain exhibited a larger current density, slower activation, and was unresponsive to cyclic adenosine monophosphate (cAMP) compared to wild‐type. With functional assays, we reclassified three rare HCN4 VUS to likely benign variants, eliminating the necessity for costly and time‐consuming further study. Our studies also provide a new lead to investigate how a VUS located in the C‐linker connecting the pore to the cAMP binding domain may affect the channel open state probability and cAMP response.  相似文献   
54.
To assess the relative roles and potential contribution of adrenergic receptor subtypes other than the beta3-adrenergic receptor in norepinephrine-mediated glucose uptake in brown adipocytes, we have here analyzed adrenergic activation of glucose uptake in primary cultures of brown adipocytes from wild-type and beta3-adrenergic receptor knockout (KO) mice. In control cells in addition to high levels of beta3-adrenergic receptor mRNA, there were relatively low alpha1A-, alpha1D-, and moderate beta1-adrenergic receptor mRNA levels with no apparent expression of other adrenergic receptors. The levels of alpha1A-, alpha1D-, and beta1-adrenergic receptor mRNA were not changed in the beta3-KO brown adipocytes, indicating that the beta3-adrenergic receptor ablation does not influence adrenergic gene expression in brown adipocytes in culture. As expected, the beta3-adrenergic receptor agonists BRL-37344 and CL-316 243 did not induce 2-deoxy-d-glucose uptake in beta3-KO brown adipocytes. Surprisingly, the endogenous adrenergic neurotransmitter norepinephrine induced the same concentration-dependent 2-deoxy-D-glucose uptake in wild-type and beta3-KO brown adipocytes. This study demonstrates that beta1-adrenergic receptors, and to a smaller degree alpha1-adrenergic receptors, functionally compensate for the lack of beta3-adrenergic receptors in glucose uptake. Beta1-adrenergic receptors activate glucose uptake through a cAMP/protein kinase A/phosphatidylinositol 3-kinase pathway, stimulating conventional and novel protein kinase Cs. The alpha1-adrenergic receptor component (that is not evident in wild-type cells) stimulates glucose uptake through a phosphatidylinositol 3-kinase and protein kinase C pathway in the beta3-KO cells.  相似文献   
55.
The three members of the endocrine-fibroblast growth factor (FGF) family, FGF19, 21, and 23 are circulating hormones that regulate critical metabolic processes. FGF23 stimulates the assembly of a signaling complex composed of α-Klotho (KLA) and FGF receptor (FGFR) resulting in kinase activation, regulation of phosphate homeostasis, and vitamin D levels. Here we report that the C-terminal tail of FGF23, a region responsible for KLA binding, contains two tandem repeats, repeat 1 (R1) and repeat 2 (R2) that function as two distinct ligands for KLA. FGF23 variants with a single KLA binding site, FGF23-R1, FGF23-R2, or FGF23-wild type (WT) with both R1 and R2, bind to KLA with similar binding affinity and stimulate FGFR1 activation and MAPK response. R2 is flanked by two cysteines that form a disulfide bridge in FGF23-WT; disulfide bridge formation in FGF23-WT is dispensable for KLA binding and for cell signaling via FGFRs. We show that FGF23-WT stimulates dimerization and activation of a chimeric receptor molecule composed of the extracellular domain of KLA fused to the cytoplasmic domain of FGFR and employ total internal reflection fluorescence microscopy to visualize individual KLA molecules on the cell surface. These experiments demonstrate that FGF23-WT can act as a bivalent ligand of KLA in the cell membrane. Finally, an engineered Fc-R2 protein acts as an FGF23 antagonist offering new pharmacological intervention for treating diseases caused by excessive FGF23 abundance or activity.

The large family of fibroblast growth factors (FGFs) has been known for its important roles in regulating critical cellular processes during embryonic development and homeostasis of normal tissues (13). While most FGFs act as cytokines or hormonelike proteins that mediate their pleiotropic cellular processes by binding to cell surface receptors endowed with intrinsic tyrosine kinase activity (FGFRs), a subfamily of FGFs (FGF 11–14) was shown to be uniquely expressed intracellularly. The mechanism of action and physiological roles of intracellular FGFs are poorly understood (46).In contrast to most receptor tyrosine kinases (RTKs) that are activated by a single ligand molecule that binds with high affinity to the extracellular domain of its cognate RTK with a dissociation constant in the subnanomolar range, the binding affinities of FGFs to FGFRs are, at least, 1,000–10,000 fold weaker with dissociation constants in the submicromolar range (79). The weak binding affinities toward FGFRs of the largest subfamily of FGF molecules designated canonical FGFs are offset by interactions with cell surface heparan sulfate proteoglycans (HSPGs). Both biochemical and structural studies revealed how multiple interactions between heparin or HSPG with both FGF and FGFR mediate tight association enabling robust receptor dimerization and tyrosine kinase activation (10, 11).The three endocrine FGFs, FGF19, 21, and 23 are part of an additional subfamily of FGF molecules. Endocrine FGFs function as circulating hormones that play essential roles in the control of various metabolic processes (12). In addition to the conserved FGF-domain found in all FGF ligands, endocrine FGFs contain unique C-terminal tails (CTs) composed of 46 (FGF19), 34 (FGF21), or 89 (FGF23) amino acids that serve as specific and high-affinity ligands for the two members of the Klotho family of surface receptors. It was shown that KLA serves as a high-affinity receptor for FGF23 while β-Klotho (KLB) functions as a high-affinity surface receptor for both FGF19 and FGF21 (1316). Structural analyses of free and ligand-occupied Klotho proteins revealed the molecular basis underlying the specificity and high affinity of KLA and KLB toward endocrine FGFs. It also showed that Klotho proteins function as the primary receptors for endocrine FGFs whereas FGFR functions as a catalytic subunit that mediates cell signaling via its tyrosine kinase domain (8, 17, 18). Accordingly, endocrine FGFs stimulate their cellular responses by forming a ternary complex with Klotho proteins and FGFRs to induce receptor dimerization, tyrosine kinase activation, and cell signaling. Unlike FGFRs that are ubiquitously expressed, the expressions of KLA and KLB are restricted to specific tissues and organs to enable precise targeting of endocrine FGFs to stimulate their physiological responses in specific cells and tissues (1922). The ability of endocrine FGFs to circulate is attributed to the loss of conserved heparin binding sites that are essential for the function of canonical FGFs (23).FGF23 is a 32-kDa glycoprotein, mainly produced in the bone by osteoblasts and osteocytes, that serve as a key hormone in regulating phosphate homeostasis, vitamin D, and calcium metabolism (24, 25). Circulating levels of physiologically active FGF23 are regulated by proteolytic cleavage to produce a FGF23 molecule lacking its unique CT (26, 27). The cleavage resulting in FGF23 inactivation prevents assembly and stimulation of the FGF23/FGFR/KLA complex. Additionally, the processing of FGF23 includes several posttranslational modifications which affect its stability and susceptibility toward proteolysis. Secreted FGF23 was shown to be O-glycosylated in its C-terminal cleavage site (28, 29) to protect the protein from C-terminal cleavage. In order for the cleavage site to be exposed, FGF23 has to be first phosphorylated in this region (30). Phosphorylation prevents glycosylation and exposes the cleavage site to proteolysis.In this paper, we demonstrate that the CT of FGF23 contains two tandem repeats and that each repeat binds with high affinity to KLA. This contrasts with FGF19 and FGF21, whose CTs contain a single binding site to KLB. Engineered FGF23 variants containing each of the two repeats individually or both repeats bind specifically to KLA and stimulate cell signaling to a similar extent. We also demonstrate that two cysteine residues flanking the second repeat form a disulfide bridge in FGF23 secreted by mammalian cells. However, both oxidized or unbridged forms of FGF23 exhibit similar KLA binding characteristics and similar cellular stimulatory activities. We also show that FGF23-WT induces mitogen-activated protein kinase (MAPK) activation in cells expressing chimeric KLA-FGFR proteins and use TIRFM imaging of individual KLA molecules on the cell surface to demonstrate that FGF23 has the capacity for simultaneous binding to two KLA molecules. These insights reveal the complexity of FGF23 regulation and its role in assembling the FGF23/FGFR/KLA signaling complex.  相似文献   
56.
57.
Melanoma is a cancer with a rising incidence, and metastatic disease is almost always lethal. We investigated the feasibility of targeting melanin, an intracellular melanocyte pigment, to deliver cytotoxic radiation to human melanoma cells in vivo by using a melanin-binding mAb (6D2). Nude mice bearing MNT1 pigmented human melanoma tumors were treated with mAb 6D2 labeled with 1.5 mCi (1 Ci = 37 GBq) of the beta-emitter 188-Rhenium (188Re) and manifested inhibition of tumor growth and prolonged survival. mAb 6D2 bound tumor melanin and demonstrated no crossreactivity with normal melanized tissues in black mice. The mechanism of melanin targeting involved Ab binding to extracellular melanin released during tumor cell turnover or to dying cells with permeable membranes. In this approach, the cytotoxic radiation emanating from labeled Ab bound to melanin is presumably delivered by "crossfire" effect to the adjacent viable tumor cells. Our results establish the feasibility of targeting melanin released from dead melanoma cells in tumors with radiolabeled Abs to achieve a therapeutic effect. In contrast to conventional tumor antigens, melanin is insoluble, resistant to degradation, and can be expected to accumulate in targeted tissues, suggesting that the efficacy of therapy could increase with each subsequent treatment cycle.  相似文献   
58.
59.
60.
Metabolic Brain Disease - Glutaric aciduria type 1 (GA1, deficiency of glutaryl CoA dehydrogenase, glutaric acidemia type 1) (ICD-10 code: E72.3; MIM 231670) is an autosomal recessive disease...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号