Bacterial infections of the mucosal epithelium are a major cause of human disease. The prolonged presence of microbial pathogens stimulates inflammation of the local tissues, which leads to changes in the molecular composition of the extracellular milieu. A well-characterized molecule that is released to the extracellular milieu by stressed or infected cells is extracellular ATP and its ecto-enzymatic degradation products, which function as signaling molecules through ligation of purinergic receptors. There has been little information, however, on the effects of the extracellular metabolites on bacterial growth in inflamed tissues. Millimolar concentrations of ATP have been previously shown to inhibit irreversibly bacterial infection through ligation of P2X7 receptors. We show here that the proinflammatory mediator, ATP, is released from Chlamydia trachomatis-infected epithelial cells. Moreover, further stimulation of the infected cells with micromolar extracellular ADP or ATP significantly impairs the growth of the bacteria, with a profile characteristic of the involvement of P2X4 receptors. A specific role for P2X4 was confirmed using cells overexpressing P2X4. The chlamydiae remain viable and return to normal growth kinetics after removal of the extracellular stimulus, similar to responses previously described for persistence of chlamydial infection. 相似文献
The activity of adult stem cells is essential to replenish mature cells constantly lost due to normal tissue turnover. By a poorly understood mechanism, stem cells are maintained through self-renewal while concomitantly producing differentiated progeny. Here, we provide genetic evidence for an unexpected function of the c-Myc protein in the homeostasis of hematopoietic stem cells (HSCs). Conditional elimination of c-Myc activity in the bone marrow (BM) results in severe cytopenia and accumulation of HSCs in situ. Mutant HSCs self-renew and accumulate due to their failure to initiate normal stem cell differentiation. Impaired differentiation of c-Myc-deficient HSCs is linked to their localization in the differentiation preventative BM niche environment, and correlates with up-regulation of N-cadherin and a number of adhesion receptors, suggesting that release of HSCs from the stem cell niche requires c-Myc activity. Accordingly, enforced c-Myc expression in HSCs represses N-cadherin and integrins leading to loss of self-renewal activity at the expense of differentiation. Endogenous c-Myc is differentially expressed and induced upon differentiation of long-term HSCs. Collectively, our data indicate that c-Myc controls the balance between stem cell self-renewal and differentiation, presumably by regulating the interaction between HSCs and their niche. 相似文献
Background: There is evidence that iron may play a role in the pathology of Alzheimer's disease (AD). There may be genetic factors that contribute to iron deposition resulting in tissue damage thus exacerbating AD.
Methods: We have genotyped 269 healthy elderly controls, 191 cases with definite or probable AD, and 69 with mild cognitive impairment (MCI) from the OPTIMA cohort.
Results: We have examined the interaction between the C2 variant of the transferrin (TF) gene and the C282Y allele of the haemochromatosis (HFE) gene as risk factors for developing AD. Our results showed that each of the two variants was associated with an increased risk of AD only in the presence of the other. Neither allele alone had any effect. Carriers of both variants were at 5 times greater risk of AD compared with all others. The interaction was significant by logistic regression (p = 0.014) and by synergy factor analysis (p = 0.015, synergy factor = 5.1). Further, carriers of these two alleles plus apolipoprotein E ε4 (APOE4) were at still higher risk of AD: of the 14 tri-carriers of the three variants, identified in this study, 12 had AD and two MCI.
Conclusion: We suggest that the combination of TF C2 and HFE C282Y may lead to an excess of redox-active iron and the induction of oxidative stress in neurones, which is exacerbated in carriers of APOE4. Since 4% of Northern Europeans carry the two iron-related variants and since iron overload is a treatable condition, these results merit replication.
Harness of sensitized transplantation remains a clinical challenge particularly in parallel with prolonged cold ischemia time (PCI)-mediated injury. Our present study was to test the role of myeloid-derived suppressor cells (MDSCs) in mouse pre-sensitized transplantation. Our findings revealed that CD11b + Gr1low MDSC was shown to have strong suppressive activity. MDSCs subsets from the tolerated mice exhibited higher suppressive capacities compared with counterparts from naive (untreated) mice. Depletion of Tregs could not affect splenic CD11b + Gr1-low MDSC frequency, but increase peripheral and intragraft CD11b + Gr1-low frequency. Intriguingly, boost of Tregs remarkably caused an increase of CD11b + Gr1-low frequency in the graft, peripheral blood, and spleen. Furthermore, peripheral CD11b + Gr1-low cells were massively accumulated at the early stage when allogeneic immune response was enhanced. Taken together, MDSCs could prevent grafts from PCI-mediated injury independent on Tregs in the pre-sensitized transplant recipients. Utilization of MDSC subset particularly CD11b + Gr1-low might provide a novel insight into improving graft outcome under such clinical scenarios. 相似文献
Pulmonary arterial hypertension (PAH) is a chronic disease which causes overload to the right ventricle. The effect of preventive training on cardiac remodelling in this condition is still unknown. This study aimed to evaluate the influence of preventive training on hypertrophy, heart function and gene expression of calcium transport proteins in rats with monocrotaline‐induced PAH. Thirty‐two male Wistar rats were randomly divided into four groups: S, sedentary control; T, trained control; SM, sedentary monocrotaline; and TM, trained monocrotaline. The preventive training protocol was performed on a treadmill for 13 weeks, five times/week. The first two weeks were adopted for adaptation to training with gradual increases in speed/time. The speed of the physical training from the third to tenth weeks was gradually increased from 0.9 to 1.1 km/h for 60 min. Next, monocrotaline was applied (60 mg/kg) to induce PAH and lactate threshold analysis performed to determine the training speeds. The training speed of the TM group in the following two weeks was 0.8 km/h for 60 min and the T = 0.9 km/h for 60 min; in the final two weeks, both groups trained at the same speed and duration 0.9 km/h, 60 min. Cardiac function was assessed through echocardiography, ventricular hypertrophy through histomorphometric analysis and gene expression through RT‐qPCR. Right cardiac function assessed through the peak flow velocity was SM = 75.5 cm/s vs. TM = 92.0 cm/s (P =0.001), and ventricular hypertrophy was SM = 106.4 μm² vs. TM = 77.7 μm² (P =0.004). There was a decrease in the gene expression of ryanodine S = 1.12 au vs. SM = 0.60 au (P =0.02) without alterations due to training. Thus, we conclude that prior physical training exerts a cardioprotective effect on the right ventricle in the monocrotaline rat model. 相似文献
The origin and specificity of alphabeta TCR(+) T cells that express CD8alphaalpha have been controversial issues. Here we provide direct evidence that precursors of functional CD8alphaalpha T cells are positively selected in the thymus in the presence of agonist self-peptides. Like conventional positive selection, this agonist selection process requires functional TCR alpha-CPM, whereas it is independent of CD8beta expression. Furthermore, CD8alphaalpha expression on mature, agonist-selected T cells does not imply selection by MHC class I, and CD8alphaalpha(+) T cells can be either class I or class II restricted. Our data define a distinct agonist-dependent, positive selection process in the thymus, and they suggest a function for CD8alphaalpha distinct from the conventional TCR coreceptor function of CD8alphabeta or CD4. 相似文献