首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1987篇
  免费   117篇
  国内免费   3篇
耳鼻咽喉   19篇
儿科学   48篇
妇产科学   38篇
基础医学   270篇
口腔科学   28篇
临床医学   226篇
内科学   343篇
皮肤病学   19篇
神经病学   134篇
特种医学   107篇
外科学   270篇
综合类   16篇
一般理论   1篇
预防医学   149篇
眼科学   75篇
药学   160篇
中国医学   8篇
肿瘤学   196篇
  2023年   20篇
  2022年   49篇
  2021年   95篇
  2020年   49篇
  2019年   59篇
  2018年   67篇
  2017年   51篇
  2016年   52篇
  2015年   51篇
  2014年   76篇
  2013年   120篇
  2012年   145篇
  2011年   135篇
  2010年   79篇
  2009年   78篇
  2008年   93篇
  2007年   115篇
  2006年   102篇
  2005年   95篇
  2004年   81篇
  2003年   82篇
  2002年   65篇
  2001年   57篇
  2000年   37篇
  1999年   51篇
  1998年   17篇
  1997年   14篇
  1996年   10篇
  1995年   10篇
  1994年   9篇
  1992年   24篇
  1991年   16篇
  1990年   11篇
  1989年   16篇
  1988年   16篇
  1987年   12篇
  1986年   12篇
  1985年   2篇
  1984年   6篇
  1983年   9篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1968年   2篇
排序方式: 共有2107条查询结果,搜索用时 31 毫秒
51.
52.
All genetic and environmental factors contributing to differences in bone structure between individuals mediate their effects through the final common cellular pathway of bone modeling and remodeling. We hypothesized that genetic factors account for most of the population variance of cortical and trabecular microstructure, in particular intracortical porosity and medullary size – void volumes (porosity), which establish the internal bone surface areas or interfaces upon which modeling and remodeling deposit or remove bone to configure bone microarchitecture. Microarchitecture of the distal tibia and distal radius and remodeling markers were measured for 95 monozygotic (MZ) and 66 dizygotic (DZ) white female twin pairs aged 40 to 61 years. Images obtained using high‐resolution peripheral quantitative computed tomography were analyzed using StrAx1.0, a nonthreshold‐based software that quantifies cortical matrix and porosity. Genetic and environmental components of variance were estimated under the assumptions of the classic twin model. The data were consistent with the proportion of variance accounted for by genetic factors being: 72% to 81% (standard errors ~18%) for the distal tibial total, cortical, and medullary cross‐sectional area (CSA); 67% and 61% for total cortical porosity, before and after adjusting for total CSA, respectively; 51% for trabecular volumetric bone mineral density (vBMD; all p < 0.001). For the corresponding distal radius traits, genetic factors accounted for 47% to 68% of the variance (all p ≤ 0.001). Cross‐twin cross‐trait correlations between tibial cortical porosity and medullary CSA were higher for MZ (rMZ = 0.49) than DZ (rDZ = 0.27) pairs before (p = 0.024), but not after (p = 0.258), adjusting for total CSA. For the remodeling markers, the data were consistent with genetic factors accounting for 55% to 62% of the variance. We infer that middle‐aged women differ in their bone microarchitecture and remodeling markers more because of differences in their genetic factors than differences in their environment. © 2014 American Society for Bone and Mineral Research.  相似文献   
53.
A common evolutionary origin for mitochondria and hydrogenosomes.   总被引:21,自引:0,他引:21       下载免费PDF全文
Trichomonads are among the earliest eukaryotes to diverge from the main line of eukaryotic descent. Keeping with their ancient nature, these facultative anaerobic protists lack two "hallmark" organelles found in most eukaryotes: mitochondria and peroxisomes. Trichomonads do, however, contain an unusual organelle involved in carbohydrate metabolism called the hydrogenosome. Like mitochondria, hydrogenosomes are double-membrane bounded organelles that produce ATP using pyruvate as the primary substrate. Hydrogenosomes are, however, markedly different from mitochondria as they lack DNA, cytochromes and the citric acid cycle. Instead, they contain enzymes typically found in anaerobic bacteria and are capable of producing molecular hydrogen. We show here that hydrogenosomes contain heat shock proteins, Hsp70, Hsp60, and Hsp10, with signature sequences that are conserved only in mitochondrial and alpha-Gram-negative purple bacterial Hsps. Biochemical analysis of hydrogenosomal Hsp60 shows that the mature protein isolated from the organelle lacks a short, N-terminal sequence, similar to that observed for most nuclear-encoded mitochondrial matrix proteins. Moreover, phylogenetic analyses of hydrogenosomal Hsp70, Hsp60, and Hsp10 show that these proteins branch within a monophyletic group composed exclusively of mitochondrial homologues. These data establish that mitochondria and hydrogenosomes have a common eubacterial ancestor and imply that the earliest-branching eukaryotes contained the endosymbiont that gave rise to mitochondria in higher eukaryotes.  相似文献   
54.
BACKGROUND: The increases in extra-pulmonary tuberculosis (EPTB) have been largely due to human immunodeficiency virus co-infection. The rates of EPTB have remained constant despite the decline in pulmonary tuberculosis (PTB) cases. OBJECTIVE: To evaluate covariates associated with EPTB. METHODS: A 4-year cohort of EPTB patients was compared with PTB cases. Enrollees were assessed for TB risk, medical records were reviewed, and Mycobacterium tuberculosis isolates were fingerprinted. RESULTS: We identified 538 EPTB cases (28.6%) in a total of 1878 enrollees. The most common sites of infection were lymph nodes (43%) and pleura (23%). EPTB cases included 320 (59%) males, 382 (71%) patients were culture-positive, and 332 (86.9%) patient isolates were fingerprinted. Fewer EPTB than PTB patients belonged to clustered M. tuberculosis strains (58% vs. 65%; P = 0.02). A multivariate model identified an increased risk for EPTB among African Americans (OR = 1.9, P = 0.01), HIV-seropositive (OR = 3.1, P < 0.01), liver cirrhosis (OR = 2.3, P = 0.02), and age <18 years (OR = 2.0, P = 0.04). Patients with concomitant pulmonary and extra-pulmonary infections were more likely to die within 6 months of TB diagnosis (OR = 2.3, P < 0.01). CONCLUSIONS: African American ethnicity is an independent risk factor for EPTB. Mortality at 6 months is partly due to the dissemination of M. tuberculosis and the severity of the underlying co-morbidity.  相似文献   
55.
Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes.OCIS codes: (010.1080) Active or adaptive optics, (170.3880) Medical and biological imaging, (170.4460) Ophthalmic optics and devices, (330.4875) Optics of physiological systems  相似文献   
56.
57.
ObjectivesThis study sought to determine the relationship between the severity of reduced quantitative perfusion parameters and mortality with and without revascularization.BackgroundThe physiological mechanisms for differential mortality risk of coronary flow reserve (CFR) and coronary flow capacity (CFC) before and after revascularization are unknown.MethodsGlobal and regional rest-stress (ml/min/g), CFR, their regional per-pixel combination as CFC, and relative stress in ml/min/g were measured as percent of LV in all serial routine 5,274 diagnostic PET scans with systematic follow-up over 10 years (mean 4.2 ± 2.5 years) for all-cause mortality with and without revascularization.ResultsSeverely reduced CFR of 1.0 to 1.5 and stress perfusion ≤1.0 cc/min/g incurred increasing size-dependent risks that were additive because regional severely reduced CFC (CFCsevere) was associated with the highest major adverse cardiac event rate of 80% (p < 0.0001 vs. either alone) and a mortality risk of 14% (vs. 2.3% for no CFCsevere; p = 0.001). Small regions of CFCsevere ≤0.5% predicted high risk (p < 0.0001 vs. no CFCsevere) related to a wave front of border zones at risk around the small most severe center. By receiver-operating characteristic analysis, relative stress topogram maps of stress (ml/min/g) as a fraction of LV defined these border zones at risk or for mildly reduced CFC (area under the curve [AUC]: 0.69) with a reduced relative tomographic subendocardial-to-subepicardial ratio. CFCsevere incurred the highest mortality risk that was reduced by revascularization (p = 0.005 vs. no revascularization) for artery-specific stenosis not defined by global CFR or stress perfusion alone.ConclusionsCFC is associated with the size-dependent highest mortality risk resulting from the additive risk of CFR and stress (ml/min/g) that is significantly reduced after revascularization, a finding not seen for global CFR. Small regions of CFCsevere ≤0.5% of LV also carry a high risk because of the surrounding border zones at risk defined by relative stress perfusion and a reduced relative subendocardial-to-subepicardial ratio.  相似文献   
58.
Coenzyme Q (Q) is a key lipidic compound for cell bioenergetics and membrane antioxidant activities. It has been shown that also has a central role in the prevention of oxidation of plasma lipoproteins. Q has been associated with the prevention of cholesterol oxidation and several aging-related diseases. However, to date no clear data on the levels of plasma Q during aging are available. We have measured the levels of plasmatic Q10 and cholesterol in young and old individuals showing different degrees of physical activity. Our results indicate that plasma Q10 levels in old people are higher that the levels found in young people. Our analysis also indicates that there is no a relationship between the degree of physical activity and Q10 levels when the general population is studied. However, very interestingly, we have found a different tendency between Q10 levels and physical activity depending on the age of individuals. In young people, higher activity correlates with lower Q10 levels in plasma whereas in older adults this ratio changes and higher activity is related to higher plasma Q10 levels and higher Q10/Chol ratios. Higher Q10 levels in plasma are related to lower lipoperoxidation and oxidized LDL levels in elderly people. Our results highlight the importance of life habits in the analysis of Q10 in plasma and indicate that the practice of physical activity at old age can improve antioxidant capacity in plasma and help to prevent cardiovascular diseases.  相似文献   
59.
Utilization of exogenous sugars found in lignocellulosic biomass hydrolysates, such as xylose, must be improved before yeast can serve as an efficient biofuel and biochemical production platform. In particular, the first step in this process, the molecular transport of xylose into the cell, can serve as a significant flux bottleneck and is highly inhibited by other sugars. Here we demonstrate that sugar transport preference and kinetics can be rewired through the programming of a sequence motif of the general form G-G/F-XXX-G found in the first transmembrane span. By evaluating 46 different heterologously expressed transporters, we find that this motif is conserved among functional transporters and highly enriched in transporters that confer growth on xylose. Through saturation mutagenesis and subsequent rational mutagenesis, four transporter mutants unable to confer growth on glucose but able to sustain growth on xylose were engineered. Specifically, Candida intermedia gxs1 Phe38Ile39Met40, Scheffersomyces stipitis rgt2 Phe38 and Met40, and Saccharomyces cerevisiae hxt7 Ile39Met40Met340 all exhibit this phenotype. In these cases, primary hexose transporters were rewired into xylose transporters. These xylose transporters nevertheless remained inhibited by glucose. Furthermore, in the course of identifying this motif, novel wild-type transporters with superior monosaccharide growth profiles were discovered, namely S. stipitis RGT2 and Debaryomyces hansenii 2D01474. These findings build toward the engineering of efficient pentose utilization in yeast and provide a blueprint for reprogramming transporter properties.Molecular transporter proteins facilitate monosaccharide uptake and serve as the first step in catabolic metabolism. In this capacity, the preferences, regulation, and kinetics of these transporters ultimately dictate total carbon flux (13); and optimization of intracellular catabolic pathways only increases the degree to which transport exerts control over metabolic flux (4, 5). Thus, monosaccharide transport profiles and rates are important design criteria and a driving force to enable metabolic engineering advances, ultimately resulting in a biorefinery concept whereby biomass is converted via microbes into a diverse set of molecules (610). Among possible host organisms, Saccharomyces cerevisiae is an emerging industrial organism with well-developed genetic tools and established industrial processes and track record (1116). However, S. cerevisiae lacks an endogenous xylose catabolic pathway and thus is unable to natively use the second most abundant sugar in lignocellulosic biomass. Decades of research have been focused on improving xylose catabolic pathways in recombinant S. cerevisiae (1722), but less work has been focused on the first committed step of the process—xylose transport, an outstanding limitation in the efficient conversion of lignocellulosic sugars (23, 24).In S. cerevisiae, monosaccharide uptake is mediated by transporters belonging to the major facilitator superfamily (MFS) (25, 26), a ubiquitous group of proteins found across species (27). The predominant transporters in yeast are members of the HXT family (28) and are marked by efficient hexose transport (29) with lower affinities to xylose thus contributing to diauxic growth and flux limitation when attempting pentose utilization in recombinant S. cerevisiae (30). Previous efforts have attempted to identify heterologous transporters with a higher affinity for xylose over glucose (3136). However, the vast majority of these transporters are either nonfunctional, not efficient, or not xylose specific (24, 37). Furthermore, nearly all known wild-type transporters that enable growth on xylose in yeast confer higher growth rates on glucose than on xylose (24, 37). As an alternative to bioprospecting, we have previously reported that xylose affinity and exponential growth rates on xylose can be improved via directed evolution of Candida intermedia glucose-xylose symporter 1 (GXS1) and Scheffersomyces stipitis xylose uptake 3 (XUT3) (38). These results demonstrated that mutations at specific residues (e.g., Phe40 in C. intermedia GXS1) can have a significant impact on the carbohydrate selectivity of these MFS transporters. The fact that single amino acid substitutions can have such a significant impact on transport phenotype (3840) indicates how simple homology based searches can be ineffective at identifying efficient xylose transporters (35, 36). However, evidence of natural xylose exclusivity is seen in the Escherichia coli xylE transporter that has recently been crystallized (41). The sequence-function flexibility of MFS transporters potentiates the capability to rewire hexose transporters from being glucose favoring, xylose permissive into being xylose-exclusive transporters.In this work, we report on the discovery of a conserved Gly36-Gly37-Val38-Leu39-Phe40-Gly41 motif surrounding the previously identified Phe40 residue of C. intermedia GXS1 that controls transporter efficiency and selectivity. By evaluating 46 different heterologously expressed transporters, we find that this motif is conserved among functional transporters and highly enriched in transporters that confer growth on xylose, taking the general form G-G/F-XXX-G. We conduct saturation mutagenesis on Val38, Leu39, and Phe40 within the variable region of this motif in C. intermedia GXS1 to demonstrate control of sugar selectivity. Next, we combine xylose-favoring mutations to create a unique mutant version of gxs1 that transports xylose, but not glucose. Finally, we demonstrate the importance of this motif in the capacity to rewire the sugar preference of other hexose transporters including S. cerevisiae hexose transporter 7 (HXT7) and S. stipitis glucose transporter/sensor (RGT2, similar to S. cerevisiae RGT2). This work serves to increase our understanding of the structure–function relationships for molecular transporter engineering and demonstrates complete rewiring of hexose transporters into transporters that prefer xylose as a substrate.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号