首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48170篇
  免费   4636篇
  国内免费   3663篇
耳鼻咽喉   355篇
儿科学   616篇
妇产科学   371篇
基础医学   5314篇
口腔科学   834篇
临床医学   6770篇
内科学   6694篇
皮肤病学   408篇
神经病学   2211篇
特种医学   1418篇
外国民族医学   27篇
外科学   4023篇
综合类   9997篇
现状与发展   15篇
一般理论   1篇
预防医学   3591篇
眼科学   1304篇
药学   5515篇
  51篇
中国医学   3354篇
肿瘤学   3600篇
  2024年   186篇
  2023年   848篇
  2022年   2055篇
  2021年   2492篇
  2020年   1922篇
  2019年   1525篇
  2018年   1587篇
  2017年   1600篇
  2016年   1397篇
  2015年   2218篇
  2014年   2849篇
  2013年   2609篇
  2012年   3939篇
  2011年   4314篇
  2010年   2820篇
  2009年   2380篇
  2008年   2848篇
  2007年   2818篇
  2006年   2656篇
  2005年   2414篇
  2004年   1655篇
  2003年   1469篇
  2002年   1240篇
  2001年   1038篇
  2000年   939篇
  1999年   980篇
  1998年   573篇
  1997年   576篇
  1996年   415篇
  1995年   379篇
  1994年   333篇
  1993年   210篇
  1992年   204篇
  1991年   220篇
  1990年   188篇
  1989年   142篇
  1988年   108篇
  1987年   80篇
  1986年   77篇
  1985年   61篇
  1984年   38篇
  1983年   24篇
  1982年   12篇
  1981年   15篇
  1980年   5篇
  1979年   10篇
  1976年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Two azobenzene dyes, [Cu(azobenzene-4,4′-dicarboxylate) diethylenediamine]n (ADD), [Cd(4,4′-diazenediyldibenzoato)(H2O)]n (DDB), have been designed, synthesized, and characterized as efficient co-sensitizers for dye-sensitized solar cells (DSSC). The optical, charge-transfer, electrochemical and photovoltaic properties of ADD and DDB are investigated by UV-visible spectroscopy, transient surface photovoltage measurement, cyclic voltammetry, and photocurrent–photovoltage measurement. The combination of ADD and DDB in DSSC leads to a wide spectral absorption over the whole visible range (350–700 nm). DSSC with ADD and DDB exhibits a short-circuit photocurrent density as high as 16.96 mA cm−2, open-circuit photovoltage of 0.73 V, a fill factor of 0.57, and overall light conversion efficiency of 7.1% under standard global AM1.5 solar irradiation conditions.

The combination of two azobenzene dyes leads to a wide spectral absorption and overall light conversion efficiency of 7.1%.  相似文献   
992.
In this paper, high-performance optical phased arrays (OPAs) assisted by transparent graphene nanoheaters and air trenches have been designed and simulated. By directly locating graphene nanoheaters on silicon waveguides, heating efficiency is enhanced by 62.96% compared to conventional structures with 1 μm SiO2 overlays, and is further enhanced by a factor of 200% by the presence of air trenches. Thanks to the high thermal conductivity of graphene, a record-high operation speed on the order of 200 kHz is realized. Power consumption for π phase shift is 4.65 mW, approximately half of that of the state-of-the-art OPAs. By introducing air trenches, thermal crosstalk is significantly reduced, resulting in an enlarged fill factor. In addition, a novel beam steering scheme in the θ direction is proposed. By applying a 30 mW heating power, a temperature gradient along antennas is generated and beam steering of 2.3° is achieved, satisfying applications such as long-range collision avoidance for autonomous driving.

Improved performances of optical phased arrays have been achieved assisted by graphene nanoheaters and air trenches.  相似文献   
993.
A new on-off-on fluorescent probe, CMOS, based on coumarin was developed to detect the process of hypochlorous acid (HOCl) oxidative stress and cysteine/homocysteine (Cys/Hcy) reduction. The probe exhibited a fast response, good sensitivity and selectivity. Moreover, it was applied for monitoring the redox process in living cells.

A new on–off–on fluorescent probe, CMOS, was designed and applied to detect the process of HOCl oxidation and Cys/Hcy reduction.

Reactive oxygen species (ROS) are indispensable products and are closely connected to various physiological processes and diseases.1 For instance, endogenous hypochlorous acid (HOCl) as one of the most important ROS, which is mainly produced from the reaction of hydrogen peroxide with chloride catalyzed by myeloperoxidase (MPO), is a potent weapon against invading pathogens of the immune system.2,3 However, excess production of HOCl may also give rise to oxidative damage via oxidizing or chlorinating the biomolecules.4 The imbalance of cellular homostasis will cause a serious pathogenic mechanism in numerous diseases, including neurodegenerative disorders,5 renal diseases,6 cardiovascular disease,7 and even cancer.8 Fortunately, cells possess an elaborate antioxidant defense system to cope with the oxidative stress.9 Therefore, it is necessary and urgent to study the redox process between ROS and antioxidants biosystems.Fluorescence imaging has been regarded as a powerful visual methodology for researching various biological components as its advantages of high sensitivity, good selectivity, little invasiveness and real-time detection.10,11 To date, amounts of small molecular fluorescent probes have been reported for detection and visualization of HOCl in vivo and in vitro.12–22,29 The designed strategies of HOCl sensitive probes are based on various HOCl-reactive functional groups, such as p-methoxyphenol,13p-alkoxyaniline,14 dibenzoyl-hydrazine,15 selenide,16 thioether,17 oxime,18 hydrazide,19 hydrazone.20 But, many of these probes display a delayed response time and low sensitivity. And, only few fluorescent probes can be applied for investigating the changes of intracellular redox status.21 Besides, it''s worth noting that most of the redox fluorescent probes rely on the organoselenium compounds.22 Even though these probes are well applied for detection of cellular redox changes, excessive organic selenium is harmful to organisms and the synthesis of organoselenium compounds is high requirement and costly. Additionally, almost all the reports have only investigated the reduction effects of glutathione (GSH) as an antioxidant in the redox events. While, there are the other two important biothiols, cysteine (Cys) and homocysteine (Hcy), which not only present vital antioxidants, but also are tightly related to a wide variety of pathological effects in biosystem, such as slowed growth, liver damage, skin lesions,23 cardiovascular,24 and Alzheimer''s diseases.25 However, the fluorescent probes for specially studying internal redox changes between HOCl and Cys/Hcy are rarely reported. In this respect, a novel redox-responsive fluorescent probe, CMOS, was designed and synthesized in this work, and we hope that it can be a potential tool for studying their biological relevance in living cells.Based on literature research, the aldehyde group has excellent selectivity in identification of Cys/Hcy, and the thiol atom in methionine can be easily oxidized to sulfoxide and sulfone by HOCl.26,27 Considering these two points, we utilized 2-mercaptoethanol to protect the 3-aldehyde of 7-diethylamino-coumarin as the recognition part of HOCl, meaning that two kinds of potential recognition moieties are merged into one site. Fluorescent probe CMOS can be easily synthesized by the acetal reaction in one step (Scheme S1). A control molecule CMOS-2 was also prepared by 3-acetyl-7-diethylaminocoumarin (CMAC) similarly. The structure of all these compounds have been convinced by 1H NMR, 13C NMR, and HR-MS (see ESI).As shown in Scheme 1a, we estimated that both CMOS and CMOS-2 can be rapidly oxidized in the appearance of HOCl. The oxidation product CMCHO of CMOS, which has the aldehyde moiety, can further react with Cys/Hcy to obtain the final product CMCys and CMHcy, respectively. In contrast, the oxidation product CMAC of CMOS-2 cannot combine with Cys/Hcy or other biothiols anymore (Scheme 1b).Open in a separate windowScheme 1Proposed reaction mechanism of CMOS and CMOS-2 to HOCl and Cys/Hcy.In order to confirm our design concept, the basic photo-physical characteristics of CMOS, CMCHO, CMOS-2 and CMAC were tested (Table S1, Fig. S1). Under the excitation wavelength 405 nm, CMOS and CMOS-2 exhibited strong fluorescence centred at 480 nm in PBS buffer solution, while the fluorescence of CMCHO and CMAC was weak around this band. The emission properties of CMOS and CMCHO were also investigated at the excitation wavelength 448 nm under the same experimental conditions as well (Fig. S2). After careful consideration, we chose 405 nm as the excitation wavelength in the follow-up experiments in vitro and in vivo.Next, the sensitivity of CMOS and CMOS-2 to HOCl and Cys/Hcy were investigated. As we expected, both the CMOS and CMOS-2 exhibited good response to HOCl. The fluorescence intensity of CMOS and CMOS-2 decreased gradually with addition of NaOCl (Fig. 1a, S3a), indicating that the fluorescence was switched off obviously in the presence of HOCl. The variation of intensity displayed good linearity with concentration of HOCl in the range of 0–20 μM (R2 = 0.993, Fig. S4), and the detection limit of CMOS to HOCl was calculated to be 21 nM (S/N = 3). Subsequently, when Cys/Hcy was added to the final solution in Fig. 1a, the fluorescence intensity increased gradually within 180 min (Fig. 1b, S5). However, the fluorescence cannot be recovered by addition thiols to the CMOS-2 solution with excess HOCl (Fig. S3b). These results indicate that the probe CMOS can response to HOCl and Cys/Hcy in a fluorescence on-off-on manner, and can be used for monitoring the redox process with high sensitivity.Open in a separate windowFig. 1(a) Fluorescence responses of CMOS (2 μM) to different concentrations of NaOCl (0–200 μM). (b) Fluorescence responses of the CMOS solution (2 μM) with HOCl (200 μM) to Cys/Hcy (5 mM). (20 mM PBS buffer/CH3CN, 7 : 3, v/v, pH = 7.4, λex = 405 nm).To further identify the recognizing mechanism of probe CMOS, high performance liquid chromatography (HPLC) and mass spectral (MS) analysis were used to detect the redox process. Initially, probe CMOS displayed a single peak with a retention time at 3.7 min (Fig. 2a, S6) while reference compound CMCHO produced a single peak with a retention time at 2.5 min (Fig. 2b, S7). Upon the addition of HOCl to the solution of CMOS, the peak at 3.7 min weakened while 2.5 min and 2.2 min appeared (Fig. 2c). According to corresponding mass spectra, the new main peak at 2.5 min is related to compound CMCHO (Fig. S8). The other new peak of 2.2 min corresponds to the compound C3, which can be predicted as an intermediate in the oxidation process (Fig. S8).28 The addition of Cys to the solution of CMCHO also caused a new peak with a retention time at 2.1 min, which has been confirmed to be the thioacetal product CMCys (Fig. S9). The possible sensing mechanism is depicted in Fig. S10.Open in a separate windowFig. 2The reversed-phase HPLC with absorption (400 nm) detection. (a) 10 μM CMOS. (b) 10 μM CMCHO. (c) 10 μM CMOS in the presence of 50 μM HOCl for 30 s. (d) 10 μM CMCHO in the presence of 1 mM Cys for 30 min. (Eluent: CH3CN containing 0.5% CH3COOH; 100% CH3CN (0–7 min), 0.5 ml min−1, 25 °C; injection volume, 5.0 μL).To study the selectivity of CMOS towards HOCl, we performed fluorescence response to different reactive oxygen species (ROS), reactive nitrogen species (RNS) and reactive sulfur species (RSS). As shown in Fig. 3a, CMOS exhibited significant change of fluorescence intensity only in the presence of HOCl, while other ROS and RNS, such as singlet oxygen (1O2), hydrogen peroxide (H2O2), hydroxyl radical (HO·), superoxide anion (O2), nitric oxide (NO), tert-butylhydroperoxide (t-BuOOH) and tert-butoxy radical (t-BuOO·) had no obvious fluorescence emission changes. Additionally, RSS which are abundant in biological samples, showed no influence in this process under the identical condition. The detection of reducing process was also investigated. As displayed in Fig. 3b, only cysteine and homocysteine induced excellent fluorescence recovery towards other reducing materials, such as RSS and various amino acids. Furthermore, the selectivity of CMOS-2 was also studied in the same condition. As expected, CMOS-2 could selectively detect HOCl, and not alter fluorescence intensity under various kinds of biothiols (Fig. S11). Therefore, our design strategy for the on–off–on probe is confirmed by results obtained above, with which CMOS can be utilized for detecting the redox process between HOCl and Cys/Hcy with high selectivity.Open in a separate windowFig. 3(a) Fluorescence response of CMOS (2 μM) to different ROS, RNS and RSS (200 μM). Bars represent emission intensity ratios before (F0) and after (F1) addition of each analytes. (a) HOCl; (b) KO2; (c) H2O2; (d) 1O2; (e) HO·; (f) t-BuOOH; (g) t-BuOO·; (h) NO2; (i) NO3; (j) NO; (k) GSH; (l) Cys; (m) Hcy; (n) Na2S; (o) Na2S2O3; (p) Na2S2O8; (q) NaSCN; (r) DTT; (s) Na2SO3. (b) Fluorescence response of the solution added HOCl in (a) to different RSS and amino acids. Bars represent emission intensity ratios before (F2) and after (F3) addition of each analytes (5 mM). (a) Cys; (b) Hcy; (c) Na2S; (d) Na2S2O3; (e) Na2S2O8; (f) NaSCN; (g) DTT; (h) Na2SO3; (i) Ala; (j) Glu; (k) Gly; (l) His; (m) Ile; (n) Leu; (o) Met; (p) Phe; (q) Pro; (r) Ser; (s) Trp; (t) Vc; (u) GSH. (20 mM PBS buffer/CH3CN, 7 : 3, v/v, pH = 7.4, λex/λem = 405/480 nm).Subsequently, the influence of pH on probe CMOS was measured. The fluorescence intensity of CMOS and CMCHO perform no significant variances in wide pH ranges (pH = 4–11, Fig. S12a). Fluorescence intensity changes could be observed immediately when HOCl was added into the solution of probe CMOS, especially in alkaline condition (Fig. 4a). Considering the pKa of HOCl is 7.6,29CMOS is responsive to both HOCl and OCl. Alkaline condition was also benefit for the fluorescence recovery of CMOS from Cys/Hcy (Fig. S12b). It is reasonable to consider that thiol atom displays higher nucleophilicity in alkaline condition. From the stop-flow test, the UV-visible absorbance of probe CMOS sharply decreased at the wavelength of 400 nm (Fig. 4b). The response time was within 10 s and the kinetic of the reaction was fitted to a single exponential function (kobs = 0.67 s−1). The ability of instantaneous response is extremely necessary to intracellular HOCl detection.Open in a separate windowFig. 4(a) Fluorescence responses of CMOS to HOCl under different pH values. Squares represent emission intensity ratios after (F1) and before (F0) addition of 200 μM HOCl (λex/λem = 405/480 nm). (b) Time-dependent changes in the absorption intensity of CMOS (1 μM) before and after addition of HOCl. (20 mM PBS buffer/CH3CN, 7 : 3, v/v, pH = 7.4, λabs = 400 nm).With these data in hand, we next applied CMOS for fluorescence imaging of the redox changes with HOCl and Cys/Hcy in living cells. After incubation with 5 μM CMOS at 37 °C for 30 min, intense fluorescence was observed of the SKVO-3 cells in the optical window 425–525 nm (Fig. 5a and d), indicating the probe can easily penetrate into cells. Treating the cells with 100 μM NaOCl led to remarkable fluorescence quenching as the probe sensed the HOCl-induced oxidative stress (Fig. 5b and e). After 3 min, the cells were washed with PBS buffer three times, and added 5 mM Cys/Hcy for 1 h, respectively. Then the fluorescence was recovered obviously (Fig. 5c and f). Experimental results clearly declare that the probe CMOS was successfully used to detect the process of HOCl oxidative stress and Cys/Hcy reducing repair in living cells.Open in a separate windowFig. 5Fluorescence imaging of the process of HOCl oxidative stress and thiols repair in CMOS-labeled SKVO-3 cells. Fluorescence images of SKVO-3 cells loaded with 5 μM CMOS at 37 °C for 30 min (a and d). Dye-loaded cells treated with 100 μM NaOCl at 25 °C for 3 min (b and e). Dye-loaded, NaOCl-treated cell incubated with 5 mM Cys (c), 5 mM Hcy (f) for 1 h. Emission intensities were collected in an optical window 425–525 nm, λex = 405 nm, intensity bar: 0–3900.  相似文献   
994.
A novel cathode architecture using vertically aligned Co nanoneedle arrays as an ordered support for application in alkaline anion-exchange membrane fuel cells (AAEMFCs) has been developed. The Co nanoneedle arrays were directly grown on a stainless steel sheet via a hydrothermal reaction and then a Pd layer was deposited on the surface of the Co nanoneedle arrays using a vacuum sputter-deposition method to form Pd/Co nanoneedle arrays. After transferring the Pd/Co nanoneedle arrays to an AAEM, a cathode catalyst layer was formed. Without the use of an alkaline ionomer, the AAEMFC with the prepared cathode catalyst layer showed an enhanced performance with ultra-low Pd loading of down to 33.5 μg cm−2, which is much higher than the conventionally used cathode electrode with a Pt loading of 100 μg cm−2. This is the first report where three-dimensional Co nanoneedle arrays have been used as the cathode support in an AAEMFC, which is able to deliver a higher power density without an alkaline ionomer than that of conventional membrane electrode assembly (MEA).

A novel ordered Pd/Co nanoneedle array was used as a cathode in an AAEMFC and delivered a higher power density than that of conventional MEA.  相似文献   
995.
Lithium–sulfur batteries are regarded as a promising energy storage system. However, they are plagued by rapid capacity decay, low coulombic efficiency, a severe shuttle effect and low sulfur loading in cathodes. To address these problems, effective carriers are highly demanded to encapsulate sulfur in order to extend the cycle life. Herein, we introduced a doped-PEDOT:PSS-coated MIL-101/S multi-core–shell structured composite. The unique structure of MIL-101, large specific area and conductive shell ensure high dispersion of sulfur in the composite and minimize the loss of polysulfides to the electrolyte. The doped-PEDOT:PSS-coated sulfur electrodes exhibited an increase in initial capacity and an improvement in rate characteristics. After 192 cycles at the current density of 0.1C, a doped-PEDOT:PSS-coated MIL-101/S electrode maintained a capacity of 606.62 mA h g−1, while the MIL-101/S@PEDOT:PSS electrode delivered a capacity of 456.69 mA h g−1. The EIS measurement revealed that the surface modification with the conducting polymer provided a lower resistance to the sulfur electrode, which resulted in better electrochemical behaviors in Li–S battery applications. Test results indicate that the MIL-101/S@doped-PEDOT:PSS is a promising host material for the sulfur cathode in the lithium–sulfur battery applications.

Lithium–sulfur batteries are regarded as a promising energy storage system.  相似文献   
996.

Background

Although the mechanism of chronic migraine (CM) is unclear, it might be related to central sensitization and neuronal persistent hyperexcitability. The tyrosine phosphorylation of NR2B (NR2B-pTyr) reportedly contributes to the development of central sensitization and persistent pain in the spinal cord. Central sensitization is thought to be associated with an increase in synaptic efficiency, but the mechanism through which NR2B-pTyr regulates synaptic participation in CM-related central sensitization is unknown. In this study, we aim to investigate the role of NR2B-pTyr in regulating synaptic plasticity in CM-related central sensitization.

Methods

Male Sprague-Dawley rats were subjected to seven inflammatory soup (IS) injections to model recurrent trigeminovascular or dural nociceptor activation, which is assumed to occur in patients with CM. We used the von Frey test to detect changes in mechanical withdrawal thresholds, and western blotting and immunofluorescence staining assays were performed to detect the expression of NR2B-pTyr in the trigeminal nucleus caudalis (TNC). NR2B-pTyr was blocked with the Src family kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)-pyrazolo [3,4-d] pyrimidine (PP2) and the protein tyrosine kinase inhibitor genistein to detected the changes in calcitonin gene-related peptide (CGRP), substance P (SP), and the synaptic proteins postsynaptic density 95 (PSD95), synaptophysin (Syp), synaptotagmin1 (Syt-1). The synaptic ultrastructures were observed by transmission electron microscopy (TEM), and the dendritic architecture of TNC neurons was observed by Golgi-Cox staining.

Results

Statistical analyses revealed that repeated infusions of IS induced mechanical allodynia and significantly increased the expression of NR2B Tyr-1472 phosphorylation (pNR2B-Y1472) and NR2B Tyr-1252 phosphorylation (pNR2B-Y1252) in the TNC. Furthermore, the inhibition of NR2B-pTyr by PP2 and genistein relieved allodynia and reduced the expression of CGRP, SP, PSD95, Syp and Syt-1 and synaptic transmission.

Conclusions

These data indicate that NR2B-pTyr might regulate synaptic plasticity in central sensitization in a CM rat model. The inhibition of NR2B tyrosine phosphorylation has a protective effect on threshold dysfunction and migraine attacks through the regulation of synaptic plasticity in central sensitization.
  相似文献   
997.
The purpose of this concept study was to investigate the possibility of automatic mean arterial pressure (MAP) regulation in a porcine heart-beating brain death (BD) model. Hemodynamic stability of BD donors is necessary for maintaining acceptable quality of donated organs for transplantation. Manual stabilization is challenging, due to the lack of vasomotor function in BD donors. Closed-loop stabilization therefore has the potential of increasing availability of acceptable donor organs, and serves to indicate feasibility within less demanding patient groups. A dynamic model of nitroglycerine pharmacology, suitable for controller synthesis, was identified from an experiment involving an anesthetized pig, using a gradient-based output error method. The model was used to synthesize a robust PID controller for hypertension prevention, evaluated in a second experiment, on a second, brain dead, pig. Hypotension was simultaneously prevented using closed-loop controlled infusion of noradrenaline, by means of a previously published controller. A linear model of low order, with variable (uncertain) gain, was sufficient to describe the dynamics to be controlled. The robustly tuned PID controller utilized in the second experiment kept the MAP within a user-defined range. The system was able to prevent hypertension, exceeding a reference of 100 mmHg by more than 10%, during 98% of a 12 h experiment. This early work demonstrates feasibility of the investigated modelling and control synthesis approach, for the purpose of maintaining normotension in a porcine BD model. There remains a need to characterize individual variability, in order to ensure robust performance over the expected population.  相似文献   
998.
目的调查分析浙江省余姚地区早期胃癌(EGC)的检出情况,探讨EGC内镜下特点及病理学特征。方法回顾性收集2016年度宁波大学医学院附属阳明医院消化内镜中心行胃镜检查患者的病例资料,筛选统计出EGC(检查时发现并经病理确诊)的检出率,并对发现的43例EGC患者(47处病灶)的临床资料进行回顾性总结,对比分析其普通白光内镜下特征、窄带成像(NBI)放大内镜下特征及病理学特征。结果 EGC的总体检出率为0.23%(43/18 534),占胃癌总检出例数的24.71%(43/174)。本研究发现EGC以发生在胃窦部最常见(36.17%,17/47),病灶大小以1.0 cm为主(68.09%,32/47),内镜下形态以0-Ⅱc型病灶为主,占55.32%(26/47)。白光内镜下表现为黏膜发红35处(74.47%,35/47)、边界清晰43处(91.49%,43/47)、表面不规则42处(89.36%,42/47)、黏膜萎缩和(或)肠上皮化生39处(82.98%,39/47)、边缘毛刺状17处(36.17%,17/47)、白色不透明物质(WOS)8处(17.02%,8/47)、表面溃疡13处(27.66%,13/47),自发性出血21处(44.68%,21/47)。30处病灶行NBI放大内镜检查,病灶边界线清晰占86.67%(26/30),病灶黏膜下微血管不规则或消失占96.67%(29/30),病灶上皮微细结构和腺管开口不规则或消失占90.00%(27/30)。病理分型以分化型为主(89.36%,42/47)。结论 EGC多见于胃窦部,形态以0-Ⅱc型为主,在白光内镜下注意观察胃黏膜局部色调的改变及特征,以及NBI放大内镜下病灶边界、黏膜下微血管及上皮微细结构和腺管开口的变化,有助于提高EGC的诊断率。  相似文献   
999.
目的:评价免疫印迹法抗双链DNA(ds-DNA)抗体、抗核小体抗体(ANuA)及绿蝇短膜虫间接免疫荧光法抗dsDNA抗体检测在系统性红斑狼疮(SLE)中的诊断价值。方法:分别运用免疫印迹法、绿蝇短膜虫间接免疫荧光法及ELISA法检测166例SLE疾病活动期(包括初发和复发)患者血清中抗ds-DNA抗体、ANuA的水平。以酶联免疫吸附法(ELISA)检测结果为标准,评价抗ds-DNA抗体和ANuA定性检测对SLE的诊断价值。结果:免疫印迹法检测抗ds-DNA抗体及ANuA诊断SLE的阳性符合率分别为73.33%、66.28%,绿蝇短膜虫间接免疫荧光法检测抗ds-DNA抗体诊断SLE的阳性符合率为68.57%;随着抗ds-DNA抗体和ANuA滴度的减小,其免疫印迹法或间接免疫荧光法检测阳性符合率均降低(P0.05)。结论:抗ds-DNA抗体、ANuA定性检测诊断SLE的阳性率均不理想,建议在ELISA检测抗ds-DNA抗体和ANuA诊断SLE的基础上采用。  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号