首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   567158篇
  免费   37109篇
  国内免费   1207篇
耳鼻咽喉   7861篇
儿科学   17439篇
妇产科学   14291篇
基础医学   94321篇
口腔科学   15779篇
临床医学   49043篇
内科学   103813篇
皮肤病学   13973篇
神经病学   39996篇
特种医学   21273篇
外国民族医学   63篇
外科学   84119篇
综合类   8678篇
现状与发展   1篇
一般理论   135篇
预防医学   41594篇
眼科学   13335篇
药学   45422篇
中国医学   1622篇
肿瘤学   32716篇
  2021年   5092篇
  2019年   4667篇
  2018年   6560篇
  2017年   4838篇
  2016年   5795篇
  2015年   7023篇
  2014年   9048篇
  2013年   12957篇
  2012年   18071篇
  2011年   18965篇
  2010年   11045篇
  2009年   10097篇
  2008年   17016篇
  2007年   17710篇
  2006年   17519篇
  2005年   16633篇
  2004年   16001篇
  2003年   15030篇
  2002年   14663篇
  2001年   25200篇
  2000年   26087篇
  1999年   21300篇
  1998年   5754篇
  1997年   4935篇
  1996年   5233篇
  1995年   4779篇
  1992年   15999篇
  1991年   16583篇
  1990年   16668篇
  1989年   16030篇
  1988年   14785篇
  1987年   14637篇
  1986年   13750篇
  1985年   13129篇
  1984年   9742篇
  1983年   8343篇
  1982年   4609篇
  1979年   9485篇
  1978年   6915篇
  1977年   5802篇
  1976年   5643篇
  1975年   6442篇
  1974年   7688篇
  1973年   7172篇
  1972年   7004篇
  1971年   6719篇
  1970年   6212篇
  1969年   5904篇
  1968年   5581篇
  1967年   5029篇
排序方式: 共有10000条查询结果,搜索用时 26 毫秒
31.
BACKGROUND AND PURPOSE:Accurate and reliable detection of white matter hyperintensities and their volume quantification can provide valuable clinical information to assess neurologic disease progression. In this work, a stacked generalization ensemble of orthogonal 3D convolutional neural networks, StackGen-Net, is explored for improving automated detection of white matter hyperintensities in 3D T2-FLAIR images.MATERIALS AND METHODS:Individual convolutional neural networks in StackGen-Net were trained on 2.5D patches from orthogonal reformatting of 3D-FLAIR (n = 21) to yield white matter hyperintensity posteriors. A meta convolutional neural network was trained to learn the functional mapping from orthogonal white matter hyperintensity posteriors to the final white matter hyperintensity prediction. The impact of training data and architecture choices on white matter hyperintensity segmentation performance was systematically evaluated on a test cohort (n = 9). The segmentation performance of StackGen-Net was compared with state-of-the-art convolutional neural network techniques on an independent test cohort from the Alzheimer’s Disease Neuroimaging Initiative-3 (n = 20).RESULTS:StackGen-Net outperformed individual convolutional neural networks in the ensemble and their combination using averaging or majority voting. In a comparison with state-of-the-art white matter hyperintensity segmentation techniques, StackGen-Net achieved a significantly higher Dice score (0.76 [SD, 0.08], F1-lesion (0.74 [SD, 0.13]), and area under precision-recall curve (0.84 [SD, 0.09]), and the lowest absolute volume difference (13.3% [SD, 9.1%]). StackGen-Net performance in Dice scores (median = 0.74) did not significantly differ (P = .22) from interobserver (median = 0.73) variability between 2 experienced neuroradiologists. We found no significant difference (P = .15) in white matter hyperintensity lesion volumes from StackGen-Net predictions and ground truth annotations.CONCLUSIONS:A stacked generalization of convolutional neural networks, utilizing multiplanar lesion information using 2.5D spatial context, greatly improved the segmentation performance of StackGen-Net compared with traditional ensemble techniques and some state-of-the-art deep learning models for 3D-FLAIR.

White matter hyperintensities (WMHs) correspond to pathologic features of axonal degeneration, demyelination, and gliosis observed within cerebral white matter.1 Clinically, the extent of WMHs in the brain has been associated with cognitive impairment, Alzheimer’s disease and vascular dementia, and increased risk of stroke.2,3 The detection and quantification of WMH volumes to monitor lesion burden evolution and its correlation with clinical outcomes have been of interest in clinical research.4,5 Although the extent of WMHs can be visually scored,6 the categoric nature of such scoring systems makes quantitative evaluation of disease progression difficult. Manually segmenting WMHs is tedious, prone to inter- and intraobserver variability, and is, in most cases, impractical. Thus, there is an increased interest in developing fast, accurate, and reliable computer-aided automated techniques for WMH segmentation.Convolutional neural network (CNN)-based approaches have been successful in several semantic segmentation tasks in medical imaging.7 Recent works have proposed using deep learning–based methods for segmenting WMHs using 2D-FLAIR images.8-11 More recently, a WMH segmentation challenge12 was also organized (http://wmh.isi.uu.nl/) to facilitate comparison of automated segmentation of WMHs of presumed vascular origin in 2D multislice T2-FLAIR images. Architectures that used an ensemble of separately trained CNNs showed promising results in this challenge, with 3 of the top 5 winners using ensemble-based techniques.12Conventional 2D-FLAIR images are typically acquired with thick slices (3–4 mm) and possible slice gaps. Partial volume effects from a thick slice are likely to affect the detection of smaller lesions, both in-plane and out-of-plane. 3D-FLAIR images, with isotropic resolution, have been shown to achieve higher resolution and contrast-to-noise ratio13 and have shown promising results in MS lesion detection using 3D CNNs.14 Additionally, the isotropic resolution enables viewing and evaluation of the images in multiple planes. This multiplanar reformatting of 3D-FLAIR without the use of interpolating kernels is only possible due to the isotropic nature of the acquisition. Network architectures that use information from the 3 orthogonal views have been explored in recent works for CNN-based segmentation of 3D MR imaging data.15 The use of data from multiple planes allows more spatial context during training without the computational burden associated with full 3D training.16 The use of 3 orthogonal views simultaneously mirrors how humans approach this segmentation task.Ensembles of CNNs have been shown to average away the variances in the solution and the choice of model- and configuration-specific behaviors of CNNs.17 Traditionally, the solutions from these separately trained CNNs are combined by averaging or using a majority consensus. In this work, we propose the use of a stacked generalization framework (StackGen-Net) for combining multiplanar lesion information from 3D CNN ensembles to improve the detection of WMH lesions in 3D-FLAIR. A stacked generalization18 framework learns to combine solutions from individual CNNs in the ensemble. We systematically evaluated the performance of this framework and compared it with traditional ensemble techniques, such as averaging or majority voting, and state-of-the-art deep learning techniques.  相似文献   
32.
To evaluate the changes in alveolar contour after guided bone regeneration (GBR) with two different combinations of biomaterials in dehiscence defects arou  相似文献   
33.
34.
35.
36.
37.
38.
39.
Mitochondria are known primarily as the location of the electron transport chain and energy production in cells. More recently, mitochondria have been shown to be signaling centers for apoptosis and inflammation. Reactive oxygen species (ROS) generated as by-products of the electron transport chain within mitochondria significantly impact cellular signaling pathways. Because of the toxic nature of ROS, mitochondria possess an antioxidant enzyme, superoxide dismutase 2 (SOD2), to neutralize ROS. If mitochondrial antioxidant enzymes are overwhelmed during severe infections, mitochondrial dysfunction can occur and lead to multiorgan failure or death. Pseudomonas aeruginosa is an opportunistic pathogen that can infect immunocompromised patients. Infochemicals and exotoxins associated with P. aeruginosa are capable of causing mitochondrial dysfunction. In this work, we describe the roles of SOD2 and mitochondrial ROS regulation in the zebrafish innate immune response to P. aeruginosa infection. sod2 is upregulated in mammalian macrophages and neutrophils in response to lipopolysaccharide in vitro, and sod2 knockdown in zebrafish results in an increased bacterial burden. Further investigation revealed that phagocyte numbers are compromised in Sod2-deficient zebrafish. Addition of the mitochondrion-targeted ROS-scavenging chemical MitoTEMPO rescues neutrophil numbers and reduces the bacterial burden in Sod2-deficient zebrafish. Our work highlights the importance of mitochondrial ROS regulation by SOD2 in the context of innate immunity and supports the use of mitochondrion-targeted ROS scavengers as potential adjuvant therapies during severe infections.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号