首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   477篇
  免费   79篇
  国内免费   3篇
耳鼻咽喉   1篇
儿科学   41篇
妇产科学   11篇
基础医学   58篇
口腔科学   31篇
临床医学   103篇
内科学   106篇
皮肤病学   14篇
神经病学   20篇
特种医学   37篇
外科学   19篇
综合类   15篇
预防医学   43篇
眼科学   10篇
药学   21篇
中国医学   2篇
肿瘤学   27篇
  2024年   2篇
  2023年   11篇
  2021年   7篇
  2020年   5篇
  2019年   4篇
  2018年   17篇
  2017年   11篇
  2016年   10篇
  2015年   12篇
  2014年   18篇
  2013年   25篇
  2012年   5篇
  2011年   12篇
  2010年   23篇
  2009年   36篇
  2008年   18篇
  2007年   10篇
  2006年   7篇
  2005年   13篇
  2004年   9篇
  2003年   6篇
  2002年   7篇
  2001年   2篇
  2000年   5篇
  1999年   16篇
  1998年   22篇
  1997年   33篇
  1996年   37篇
  1995年   27篇
  1994年   21篇
  1993年   18篇
  1992年   3篇
  1991年   3篇
  1990年   6篇
  1989年   15篇
  1988年   8篇
  1987年   4篇
  1986年   11篇
  1985年   10篇
  1984年   7篇
  1983年   6篇
  1982年   10篇
  1981年   6篇
  1980年   10篇
  1978年   4篇
  1977年   3篇
  1976年   4篇
排序方式: 共有559条查询结果,搜索用时 15 毫秒
131.
Hereditary persistence of fetal hemoglobin (HPFH) is a genetically heterogeneous and clinically benign condition characterized by persistent expression of fetal hemoglobin (Hb F) into adulthood. In the G gamma beta + type, no major deletions in the globin gene cluster occur; adult heterozygotes produce approximately 20% Hb F, which results from overproduction of G gamma chains, with no apparent increase in production from the adjacent A gamma gene. We have recently described a point mutation 202 base pairs 5' to the cap site of the G gamma gene in an individual with G gamma beta + HPFH. This mutation abolishes a normal ApaI restriction endonuclease site, and thus can be detected by blotting of genomic DNA. We present here further data on the ApaI mutation: (1) It occurs in six of seven families with G gamma beta + HPFH. (2) In three families, detailed haplotype analysis using 11 polymorphic restriction sites in the beta globin cluster has been done. The two that carry the missing ApaI site are identical but the third, which has a normal ApaI pattern, differs from the other two in at least two sites, one of which is a new polymorphic Nco I site between the delta and beta globin genes. This suggests the possibility of a different HPFH mutation in the third family. (3) The haplotype of the G gamma beta + HPFH chromosome carrying the ApaI mutation is different from that of 108 beta A chromosomes of black individuals that have been tested. (4) The G gamma ApaI site is normal in 61 beta A and 109 beta S alleles from non-HPFH black individuals, including 22 who share the same haplotype for the intragenic G gamma, A gamma HindIII polymorphisms. These data add support to the possibility that the -202 mutation is actually causative of the G gamma beta + HPFH phenotype.  相似文献   
132.
133.
Platelet adhesion to collagen type IV under flow conditions   总被引:3,自引:2,他引:3  
Collagen type IV is a sheet-forming collagen and a major constituent of the vessel wall. To find out which conditions are important for platelet adhesion to collagen type IV, we performed perfusion studies with anticoagulated blood in parallel plate perfusion chambers. The role of divalent cations was investigated by using plasmas with variable concentrations of Mg2+ and Ca2+ ions. When Mg2+ concentration was decreased from 2.00 mmol/L to 0.25 mmol/L at a fixed Ca2+ concentration of 1.25 mmol/L, platelet coverage on the collagen type IV surface decreased from 22.8% +/- 1.8% (n = 4) to 4.6% +/- 0.6% (n = 4) at a shear rate of 1,600 s-1. Also, platelet aggregate formation on collagen type IV was strongly impaired. A monoclonal antibody against the glycoprotein (Gp) Ib receptor and von Willebrand factor (vWF)- depleted plasma reduced the platelet coverage to collagen type IV to, respectively, 10% and 45% of the control value. Electron microscopy showed that vWF was only present between platelets and between the platelet and the collagen type IV surface, but did not bind elsewhere to collagen type IV. These data indicate that collagen type IV is a reactive collagen for platelets. Differences in physiologic plasma magnesium concentrations may in part explain the differences in platelet reactivity to collagen type IV between individuals, and perhaps contribute to differences in the risk for thrombosis.  相似文献   
134.
Hantgan  RR; Endenburg  SC; Sixma  JJ; de Groot  PG 《Blood》1995,86(3):1001-1009
The role of the RGDX putative receptor-recognition sites, which are present on the alpha chains of fibrin, in promoting platelet adhesion has been examined in flowing whole blood using the rectangular perfusion chamber at wall shear rates of 340 and 1,600/s. Platelets adhered to a comparable extent to surfaces coated with native fibrin and surfaces coated with fragment X-fibrin, a product of limited fibrinolysis that lacks the RGDS sites normally present at positions 572 to 575 of the alpha chains. The strengths of these adhesive interactions were comparable based on the concentrations of the antiadhesive peptide D-RGDW required to block platelet deposition to native and fragment X-fibrin at both low and high wall shear rate. Blocking either or both RGDX sequences with peptide-specific monoclonal antibodies did not inhibit platelet deposition in perfusion experiments performed with normal blood at 340/s, indicating that neither RGD motif is required for adhesion. However, adhesion was partly inhibited by anti-RGDX antibodies when perfusions were performed with blood from an afibrinogenemic patient, suggesting the RGDX sequences may play a limited role in platelet deposition. Exposure of fibrin surfaces to plasminogen/tissue-type plasminogen activator did cause a time- dependent loss of adhesiveness, but this effect was only weakly correlated with proteolysis of the fibrin alpha chains. These observations provide evidence that neither RGDX sequence is required for platelets to adhere avidly to fibrin in flowing blood. These results further suggest that incomplete fibrinolysis yields a highly thrombogenic surface.  相似文献   
135.
We examined the prognostic impact of CD2 antigen expression for 651 patients with T-lineage acute lymphoblastic leukemia (ALL), who were enrolled in front-line Childrens Cancer Group treatment studies between 1983 and 1994. There was a statistically significant correlation between the CD2 antigen positive leukemic cell content of bone marrow and probability of remaining in bone marrow remission, as well as overall event-free survival (EFS) (P = .0003 and P = .002, log-rank tests for linear trend). When compared with patients with the highest CD2 expression level (> 75% positivity), the life table relative event rate (RER) was 1.22 for patients with intermediate range CD2 expression level (30% to 75% positivity) and 1.81 for "CD2-negative" patients (< 30% positivity). At 6 years postdiagnosis, the EFS estimates for the three CD2 expression groups (low positivity to high positivity) were 52.8%, 65.5%, and 71.9%, respectively. CD2 expression remained a significant predictor of EFS after adjustment for the effects of other covariates by multivariate regression, with a RER of 1.47 for CD2- negative patients (P = .04). Analysis of T-lineage ALL patients shows a significant separation in EFS after adjustment for the National Cancer Institute (NCI) age and white blood cell (WBC) criteria for standard and high-risk ALL (P = .002, RER = 1.67). The determination of CD2 expression on leukemic cells helped identify patients with the better and poorer prognoses in both of these risk group subsets. For standard risk T-lineage ALL, CD2-negative patients had a worse outcome (P = .0007, RER = 2.92) with an estimated 5-year EFS of 55.9% as compared with 78.3% for the CD2-positive patients. Thus, CD2 negativity in standard risk T-lineage ALL identified a group of patients who had a worse outcome than high-risk T-lineage ALL patients who were CD2 positive. The percentage of CD2 antigen positive leukemic cells from T- lineage ALL patients is a powerful predictor of EFS after chemotherapy. This prognostic relationship is the first instance in which a biological marker in T-lineage ALL has been unequivocally linked to treatment outcome.  相似文献   
136.
Retinoids are important regulators of cell growth and differentiation in vitro and in vivo and they exert their biologic activities by binding to nuclear retinoic acid receptors (RARs; alpha, beta, and gamma) and retinoid X receptors (RXRs; alpha, beta, and gamma). All- trans retinoic acid (RA) induces complete remission in patients with acute promyelocytic leukemia (APL) presumably by binding directly to RAR alpha of APL cells. Leukemic blasts from APL patients initially responsive to RA can become resistant to the agent. HL-60 myeloblasts cultured with RA have developed mutations of the ligand-binding region of RAR alpha and have become resistant to RA. Furthermore, insertion of an RAR alpha with an alteration in the ligand-binding region into normal murine bone marrow cells can result in growth factor-dependent immortalization of the early hematopoietic cells. To determine if alterations of the ligand binding domain of RAR alpha might be involved in several malignant hematologic disorders, the mutational status of this region (exons 7, 8, and 9) was examined in 118 samples that included a variety of cell lines and fresh cells from patients with myelodysplastic syndromes (MDS) and acute myeloid leukemias (AML), including 20 APL patients, 5 of whom were resistant to RA and 1 who was refractory to RA at diagnosis, using polymerase chain reaction-single- strand conformational polymorphism (PCR-SSCP) analysis and DNA sequencing. In addition, 7 of the 20 APLs were studied for alterations of the other coding exons of the gene (exons 2 through 6). No mutations of RAR alpha were detected. Although the sensitivity of PCR-SSCP analysis is less than 100%, these findings suggest that alterations of RAR alpha gene are rare and therefore other mechanisms must be involved in the onset of resistance to retinoids and in the lack of differentiation in disorders of the myeloid lineage.  相似文献   
137.
Broudy  VC; Kovach  NL; Bennett  LG; Lin  N; Jacobsen  FW; Kidd  PG 《Blood》1994,83(8):2145-2152
Stem cell factor (SCF) is a hematopoietic growth factor produced by fibroblasts and endothelial cells that stimulates the growth of primitive hematopoietic cells. SCF triggers cell growth by binding to the c-kit receptor. Because endothelial cells can respond to certain hematopoietic growth factors, we tested human umbilical vein endothelial cells for display of the c-kit receptor and examined the effect of SCF on endothelial cell proliferation, adhesion molecule expression, and production of tissue factor. Quantitative binding experiments with 125I-SCF showed both high-affinity (Kd = 42 pmol/L) and low-affinity (Kd = 1.7 nmol/L) c-kit receptors. There were approximately 1,100 high-affinity c-kit receptors, and 5,400 low- affinity c-kit receptors per endothelial cell. Enzyme immunoassays showed that endothelial cells released soluble c-kit receptor and SCF. The transmembrane form of SCF was detected by indirect immunofluorescence analysis using monoclonal or polyclonal anti-SCF receptor antibodies. The addition of SCF (100 ng/mL) did not alter endothelial cell proliferation over a 7-day period. Similarly, there was no change in the release of tissue factor or expression of inducible endothelial adhesion molecules (intercellular adhesion molecule-1, endothelial-leukocyte adhesion molecule-1, and vascular cell adhesion molecule-1) measured by enzyme-linked immunosorbant assay at 4 and 24 hours after SCF addition. The neutralizing anti-c-kit receptor monoclonal antibody SR-1 blocked binding of 125I-SCF to the c- kit receptor by 98% but did not alter endothelial cell proliferation or adhesion-molecule expression. c-kit receptors were also detected on adult endothelial cells lining small blood vessels in normal human lymph nodes. These data indicate that normal human endothelial cells produce SCF and show high-affinity c-kit receptors that have the capacity to dimerize. The lack of response to exogenous SCF may be because of intracellular activation of the c-kit receptor via autocrine production of SCF. Alternatively, SCF and c-kit may play a role other than stimulation of proliferation, adhesion-molecule display, or tissue factor production by endothelial cells. The production of soluble c-kit receptors by normal human endothelial cells may serve to regulate the bioactivity of SCF within the bone marrow microenvironment.  相似文献   
138.
Platelet membrane glycoprotein IV (GPIV) is a cell-surface glycoprotein that has been proposed as a receptor for collagen. Recently, it has been shown that platelets with the Naka-negative phenotype lack GPIV on their surface, whereas donors with this phenotype are healthy and do not suffer from hematologic disorders. In this study, we compared Naka- negative platelets with normal platelets in adhesion to collagen types I, III, IV, and V and the extracellular matrix of endothelial cells (ECM) under static and flow conditions. No differences in platelet adhesion and subsequent aggregate formation on the collagens types I, III, and IV were observed under static and flow conditions. Adhesion of both homozygous and heterozygous Naka-negative platelets to collagen type V was strongly reduced under static conditions. Collagen type V was not adhesive under flow conditions. No difference in platelet adhesion to ECM was observed, which suggests that GPIV is not important in adhesion to subendothelium, for which ECM may serve as a model. These results indicate that GPIV is not a functional receptor for collagen under flow conditions.  相似文献   
139.
Eipers  PG; Krauss  JC; Palsson  BO; Emerson  SG; Todd  RF rd; Clarke  MF 《Blood》1995,86(10):3754-3762
Hematopoietic stem cell gene therapy holds the promise of being able to treat a variety of inherited and acquired diseases of the hematopoietic stem cell. However, to date, genetic modification of the human hematopoietic stem cell has been relatively inefficient. Here, we report the results of using a bioreactor system to expand hematopoietic cells after a brief retrovirus infection using a high titer, replication defective virus encoding for murine CD18. The retrovirus transduced culture continued to produce genetically modified hematopoietic progenitors for up to 6 weeks, the duration of the culture period. Up to one-third of the long-term culture initiating cell (LTC-IC) are genetically modified by the culture conditions. Murine CD18 can be expressed on the cell surface of up to 20% of the mature cells generated by the culture system, suggesting that clinically significant levels of gene transfer may be occurring. These results demonstrate the feasibility of using continuous perfusion bioreactors as a method of efficiently modifying human hematopoietic stem cells.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号