Introduction: Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. Although the therapy of ALL has significantly improved, the heterogeneous genetic landscape of the disease often causes relapse, which is difficult to treat. Achieving a positive outcome for patients with relapsed or refractory ALL remains a challenging issue. The high prevalence of NOTCH-activating mutations in T-cell acute lymphoblastic leukemia (T-ALL) and the central role of NOTCH signaling in regulating cell survival and growth of ALL provide a rationale for the development of Notch signaling-targeted strategies in this disease. Therapeutic alternatives with effective anti-leukemic potential and low toxicity are needed.
Areas covered: This review provides an overview of the currently available drugs directly or indirectly targeting Notch signaling in ALL. Besides considering the known Notch targeting approaches, such as γ-secretase inhibitors (GSIs) and Notch inhibiting antibodies (mAbs), currently in clinical trials, we focus on the recent insights into the molecular mechanisms underlying the Notch signaling regulation in ALL.
Expert opinion: Novel drugs targeting specific steps of Notch signaling or intersecting pathways could improve the efficiency of the conventional hematological cancers therapies. Further studies are required to translate the new findings into future clinical applications. 相似文献
Introduction: G protein-coupled receptor (GPCR) kinase-2 (GRK2) is a regulator of GPCRs, in particular β-adrenergic receptors (ARs), and as demonstrated by decades of investigation, it has a pivotal role in the development and progression of cardiovascular disease, like heart failure (HF). Indeed elevated levels and activity of this kinase are able to promote the dysfunction of both cardiac and adrenal α- and β-ARs and to dysregulate other protective signaling pathway, such as sphingosine 1-phospate and insulin. Moreover, recent discoveries suggest that GRK2 can signal independently from GPCRs, in a ‘non-canonical’ manner, via interaction with non-GPCR molecule or via its mitochondrial localization.
Areas covered: Based on this premise, GRK2 inhibition or its genetic deletion has been tested in several disparate animal models of cardiovascular disease, showing to protect the heart from adverse remodeling and dysfunction.
Expert opinion: HF is one of the leading cause of death worldwide with enormous health care costs. For this reason, the identification of new therapeutic targets like GRK2 and strategies such as its inhibition represents a new hope in the fight against HF development and progression. Herein, we will update the readers about the ‘state-of-art’ of GRK2 inhibition as a potent therapeutic strategy in HF. 相似文献
Cerebral adrenoleukodystrophy (CALD) is a rapidly progressing, often fatal neurodegenerative disease caused by mutations in the ABCD1 gene, resulting in deficiency of ALD protein. Clinical benefit has been reported following allogeneic hematopoietic stem cell transplantation (HSCT). We conducted a large multicenter retrospective chart review to characterize the natural history of CALD, to describe outcomes after HSCT, and to identify predictors of treatment outcomes. Major functional disabilities (MFDs) were identified as having the most significant impact on patients’ abilities to function independently and were used to assess HSCT outcome. Neurologic function score (NFS) and Loes magnetic resonance imaging score were assessed. Data were collected on 72 patients with CALD who did not undergo HSCT (untreated cohort) and on 65 patients who underwent transplantation (HSCT cohort) at 5 clinical sites. Kaplan-Meier (KM) estimates of 5-year overall survival (OS) from the time of CALD diagnosis were 55% (95% confidence interval [CI], 42.2% to 65.7%) for the untreated cohort and 78% (95% CI, 64% to 86.6%) for the HSCT cohort overall (P?=?.01). KM estimates of 2-year MFD-free survival for patients with gadolinium-enhanced lesions (GdE+) were 29% (95% CI, 11.7% to 48.2%) for untreated patients (n?=?21). For patients who underwent HSCT with GdE+ at baseline, with an NFS ≤1 and Loes score of 0.5 to ≤9 (n?=?27), the 2-year MFD-free survival was 84% (95% CI, 62.3% to 93.6%). Mortality rates post-HSCT were 8% (5 of 65) at 100days and 18% (12 of 65) at 1 year, with disease progression (44%; 7 of 16) and infection (31%; 5 of 16) listed as the most common causes of death. Adverse events post-HSCT included infection (29%; 19 of 65), acute grade II-IV graft-versus-host disease (GVHD) (31%; 18 of 58), and chronic GVHD (7%; 4 of 58). Eighteen percent of the patients (12 of 65) experienced engraftment failure after their first HSCT. Positive predictors of OS in the HSCT cohort may include donor-recipient HLA matching and lack of GVHD, and early disease treatment was predictive of MFD-free survival. GdE+ status is a strong predictor of disease progression in untreated patients.? This study confirms HSCT as an effective treatment for CALD when performed early. We propose survival without MFDs as a relevant treatment goal, rather than solely assessing OS as an indicator of treatment success. 相似文献
Archives of Women's Mental Health - The first aim of this article is to analyze the risk/benefit ratio of using psychotropic drugs approved in some countries for treating fibromyalgia syndrome... 相似文献
Interferon-γ inducible protein 10 (IP-10), is a potent chemoattractant that promotes migration of monocytes and activated T-cells to inflammation foci. IP-10 is elevated in serum of patients with chronic hepatitis C virus (HCV) and tuberculosis (TB) infections, although it remains to be determined the contribution of IP-10 in restricting Mycobacterium tuberculosis (Mtb) replication. Here, we investigated the impact of IP-10 on mycobacteria replication using the ex vivo model of human whole-blood (WB) assay. In particular, we compared the levels of IP-10 upon infection with different Mtb clinical strains and species of non-tuberculous mycobacteria (NTM) and evaluated how IP-10 may contain bacterial replication. Interestingly, we observed that the inhibition of the host enzyme dipeptidyl peptidase IV (DPP-IV), which inactivates IP-10 through cleavage of two amino acids at the chemokine N-terminus, restricted mycobacterial persistence in WB, supporting the critical role of full length IP-10 in mediating an anti-Mtb response. Addition of recombinant IP-10 expressed in eukaryotic cells enhanced the anti-mycobacterial activity in WB, although no differences were observed when IP-10 containing different proportions of cleaved and non-cleaved forms of the chemokine were added. Moreover, recombinant IP-10 did not exert a direct anti-mycobacterial effect. Our results underscore the clinical relevance of IP-10 in mycobacteria pathogenesis and support the potential outcomes that may derive by targeting the IP-10/CXCR3 pathway as host directed therapies for the treatment of Mtb or NTM infections. 相似文献
Immunologic Research - The impairment of regulatory T cells (Tregs) is a characteristic feature of autoimmune hepatitis (AIH), and the degradation of tryptophan (Trp) to kynurenine (Kyn), by gamma... 相似文献
Efficient and sensitive diagnostic tools are essential for the study of the eco-epidemiology of Echinococcus species. We evaluated an automated magnetic bead-based DNA extraction commercial kit followed by qPCR (MB-qPCR), for the detection of Echinococcus multilocularis and Echinococcus canadensis in coyote (Canis latrans) fecal samples. The diagnostic sensitivity was determined by validating the method against the scraping, filtration, and counting technique (SFCT) for samples collected in Canada. From the 60 samples tested, 27 out of 31 SFCT positives samples for Echinococcus cestodes were positive in the MB-qPCR for E. multilocularis, with a sensitivity of 87.1% (95% CI 70.2 to 96.4%). Two samples were also positive for E. canadensis in the MB-qPCR and confirmed by morphological identification of adult worms. The agreement of the MB-qPCR and the SFCT was statistically significant with a kappa value of 0.67 (95% CI 0.48–0.85; p value < 0.001). The magnetic bead-based DNA extraction followed by qPCR proved to have a sensitivity comparable to the SFCT to detect E. multilocularis. Although the diagnostic sensitivity for E. canadensis was not estimated, MB-qPCR identified E. canadensis cases previously overlooked when using SFCT. We propose a combination of molecular and morphological identification using the MB-qPCR and the SFCT to detect both parasites, allowing for a more efficient large-scale surveillance, and detecting co-infections of Echinococcus species that can be difficult to identify when only based on morphology.