首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   5篇
基础医学   3篇
临床医学   4篇
内科学   1篇
神经病学   45篇
特种医学   2篇
外科学   19篇
药学   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   8篇
  2012年   12篇
  2011年   16篇
  2010年   7篇
  2009年   3篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2004年   1篇
  1995年   1篇
  1977年   1篇
排序方式: 共有75条查询结果,搜索用时 31 毫秒
31.
The subthalamic nucleus (STN) is a small, glutamatergic nucleus situated in the diencephalon. A critical component of normal motor function, it has become a key target for deep brain stimulation in the treatment of Parkinson's disease. Animal studies have demonstrated the existence of three functional sub-zones but these have never been shown conclusively in humans. In this work, a data driven method with diffusion weighted imaging demonstrated that three distinct clusters exist within the human STN based on brain connectivity profiles. The STN was successfully sub-parcellated into these regions, demonstrating good correspondence with that described in the animal literature. The local connectivity of each sub-region supported the hypothesis of bilateral limbic, associative and motor regions occupying the anterior, mid and posterior portions of the nucleus respectively. This study is the first to achieve in-vivo, non-invasive anatomical parcellation of the human STN into three anatomical zones within normal diagnostic scan times, which has important future implications for deep brain stimulation surgery.  相似文献   
32.
33.
34.
Making accurate decisions often involves the integration of current and past evidence. Here, we examine the neural correlates of conflict and evidence integration during sequential decision-making. Female and male human patients implanted with deep-brain stimulation (DBS) electrodes and age-matched and gender-matched healthy controls performed an expanded judgment task, in which they were free to choose how many cues to sample. Behaviorally, we found that while patients sampled numerically more cues, they were less able to integrate evidence and showed suboptimal performance. Using recordings of magnetoencephalography (MEG) and local field potentials (LFPs; in patients) in the subthalamic nucleus (STN), we found that β oscillations signaled conflict between cues within a sequence. Following cues that differed from previous cues, β power in the STN and cortex first decreased and then increased. Importantly, the conflict signal in the STN outlasted the cortical one, carrying over to the next cue in the sequence. Furthermore, after a conflict, there was an increase in coherence between the dorsal premotor cortex and STN in the β band. These results extend our understanding of cortico-subcortical dynamics of conflict processing, and do so in a context where evidence must be accumulated in discrete steps, much like in real life. Thus, the present work leads to a more nuanced picture of conflict monitoring systems in the brain and potential changes because of disease.SIGNIFICANCE STATEMENT Decision-making often involves the integration of multiple pieces of information over time to make accurate predictions. We simultaneously recorded whole-head magnetoencephalography (MEG) and local field potentials (LFPs) from the human subthalamic nucleus (STN) in a novel task which required integrating sequentially presented pieces of evidence. Our key finding is prolonged β oscillations in the STN, with a concurrent increase in communication with frontal cortex, when presented with conflicting information. These neural effects reflect the behavioral profile of reduced tendency to respond after conflict, as well as relate to suboptimal cue integration in patients, which may be directly linked to clinically reported side-effects of deep-brain stimulation (DBS) such as impaired decision-making and impulsivity.  相似文献   
35.
36.
37.
OBJECTIVE: To determine the effect of globus pallidus internus (GPi) deep brain stimulation (DBS) on motor cortex plasticity in patients with primary generalised dystonia. METHODS: We studied 10 patients with primary generalised dystonia (5 DYT1+, 5 idiopathic, 5 female, mean age 42) following GPi DBS and 10 healthy subjects. Motor cortex plasticity was assessed using transcranial magnetic stimulation (TMS) paired associative stimulation (PAS) of motor cortex and median nerve, a method which has been shown in healthy subjects to produce LTP-like effects. Thresholds and TMS intensity to produce a resting motor evoked potential (MEP) of 1 mV were determined. Resting MEP amplitude and stimulus response curves were recorded before and after PAS. Patients were recorded ON and OFF DBS in separate sessions. RESULTS: The mean TMS intensity to produce a resting MEP of 1 mV was 54% of maximum stimulator output when OFF and 52% ON DBS. Fifteen minutes after PAS the resting MEP amplitude increased in patients OFF DBS and in control subjects whereas it decreased in patients ON DBS. Similarly, after PAS, the mean amplitude of the stimulus response curve increased OFF DBS, but this effect was abolished with DBS ON. Furthermore, patients who had the largest clinical response to chronic DBS also had the largest difference in the effect of PAS with DBS ON vs. OFF. CONCLUSIONS: After PAS, patients with primary generalised dystonia showed a similar pattern of increased motor cortex excitability as healthy subjects when GPi DBS was OFF but not with GPi DBS ON. These results suggest that GPi DBS may reduce LTP-like motor cortex plasticity, which could contribute to its mechanism of action in dystonia.  相似文献   
38.
Deep brain stimulation (DBS) of globus pallidus internus (GPi) has emerged as an effective treatment for primary generalized dystonia. However, the physiological mechanisms of improvement are not fully understood. Cortical activity in response to pallidal stimulation was recorded in 6 patients with primary generalized dystonia >6 months after bilateral GPi DBS. Scalp electroencephalogram was recorded using 60 surface electrodes during 10 Hz bipolar pallidal DBS at each electrode contact pair. Anatomical position of the electrode contacts in relation to the GPi, medial medullary lamina and globus pallidus externus (GPe) was determined from the postoperative stereotactic MRI. In all six patients an evoked potential (EP) was observed with average onset latency of 10.9 ms ± 0.77, peak latency 26.6 ms ± 1.6, distributed mainly over the ipsilateral hemisphere, maximal centrally. The mean amplitude of this potential was larger with stimulation in posteroventral GPi than in GPe (3.36 μV vs. 0.50 μV, P < 0.0001). The EP was absent in one patient‐side, ipsilateral to a previous thalamotomy. Low frequency GPi stimulation produces an EP distributed centrally over the ipsilateral hemisphere. The latency and distribution of the EP are consistent with stimulation of pallidothalamic neurons projecting to the sensorimotor cortex. Because the EP is larger and more consistently present with stimulation of posteroventral GPi than GPe, it may provide a physiological tool to identify contacts within the optimal surgical target. © 2007 Movement Disorder Society  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号