首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2257篇
  免费   193篇
  国内免费   7篇
耳鼻咽喉   14篇
儿科学   63篇
妇产科学   17篇
基础医学   298篇
口腔科学   53篇
临床医学   236篇
内科学   539篇
皮肤病学   23篇
神经病学   194篇
特种医学   76篇
外科学   280篇
综合类   7篇
一般理论   1篇
预防医学   145篇
眼科学   93篇
药学   239篇
肿瘤学   179篇
  2023年   29篇
  2022年   41篇
  2021年   82篇
  2020年   66篇
  2019年   79篇
  2018年   86篇
  2017年   70篇
  2016年   90篇
  2015年   93篇
  2014年   122篇
  2013年   147篇
  2012年   202篇
  2011年   192篇
  2010年   86篇
  2009年   81篇
  2008年   142篇
  2007年   115篇
  2006年   121篇
  2005年   102篇
  2004年   94篇
  2003年   83篇
  2002年   73篇
  2001年   15篇
  2000年   13篇
  1999年   19篇
  1998年   26篇
  1997年   23篇
  1996年   14篇
  1995年   7篇
  1994年   10篇
  1993年   7篇
  1992年   5篇
  1991年   11篇
  1990年   12篇
  1989年   9篇
  1988年   8篇
  1987年   11篇
  1986年   5篇
  1985年   9篇
  1984年   5篇
  1983年   6篇
  1982年   3篇
  1981年   4篇
  1979年   8篇
  1977年   2篇
  1976年   2篇
  1974年   6篇
  1972年   2篇
  1971年   6篇
  1969年   2篇
排序方式: 共有2457条查询结果,搜索用时 0 毫秒
61.
62.
Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting 1–2% of the general population. A number of studies have demonstrated that AF, and in particular lone AF, has a substantial genetic component. Monogenic mutations in lone and familial AF, although rare, have been recognized for many years. Presently, mutations in 25 genes have been associated with AF. However, the complexity of monogenic AF is illustrated by the recent finding that both gain- and loss-of-function mutations in the same gene can cause AF. Genome-wide association studies (GWAS) have indicated that common single-nucleotide polymorphisms (SNPs) have a role in the development of AF. Following the first GWAS discovering the association between PITX2 and AF, several new GWAS reports have identified SNPs associated with susceptibility of AF. To date, nine SNPs have been associated with AF. The exact biological pathways involving these SNPs and the development of AF are now starting to be elucidated. Since the first GWAS, the number of papers concerning the genetic basis of AF has increased drastically and the majority of these papers are for the first time included in a review. In this review, we discuss the genetic basis of AF and the role of both common and rare genetic variants in the susceptibility of developing AF. Furthermore, all rare variants reported to be associated with AF were systematically searched for in the Exome Sequencing Project Exome Variant Server.  相似文献   
63.
64.
Osteoarthritis (OA) and the non‐steroidal anti‐inflammatory drugs (NSAIDs) used to relieve OA‐associated pain have been linked independently to increased cardiovascular risk. We examined the risk of cardiovascular events associated with NSAID use in patients with OA. We employed linked nationwide administrative registers to examine NSAID use between 1996 and 2015 by Danish patients with OA aged ≥18 years. Using adjusted Cox proportional hazard analyses, we calculated the risk of the composite outcome of cardiovascular death, non‐fatal myocardial infarction and non‐fatal ischaemic stroke/TIA, and of each outcome separately, up to 5 years after OA diagnosis. Of 533 502 patients included, 64.3% received NSAIDs and 38 226 (7.2%) experienced a cardiovascular event during follow‐up. Compared with non‐use, all NSAIDs were associated with increased risk of the composite outcome: hazard ratio (HR) for rofecoxib, 1.90 (95% confidence interval, 1.74‐2.08); celecoxib, 1.47 (1.34‐1.62); diclofenac, 1.44 (1.36‐1.54); ibuprofen, 1.20 (1.15‐1.25); and naproxen, 1.20 (1.04‐1.39). Similar results were seen for each outcome separately. When celecoxib was used as reference, ibuprofen (HRs: 0.81 [CI: 0.74‐0.90]) and naproxen (HRs: 0.81 [0.68‐0.97]) exhibited a lower cardiovascular risk, even when low doses were compared. Low‐dose naproxen and ibuprofen were associated with the lowest risks of the composite outcome compared to no NSAID use: HRs: 1.12 (1.07‐1.19) and 1.16 (0.92‐1.42), respectively. In patients with OA, we found significant differences in cardiovascular risk among NSAIDs. Naproxen and ibuprofen appeared to be safer compared to celecoxib, also when we examined equivalent low doses. In terms of cardiovascular safety, naproxen and ibuprofen, at the lowest effective doses, may be the preferred first choices among patients with OA needing pain relief.  相似文献   
65.
66.
Leukotriene (LT) A4 hydrolase/aminopeptidase (LTA4H) is a bifunctional zinc metalloenzyme that catalyzes the committed step in the formation of the proinflammatory mediator LTB4. Recently, the chemotactic tripeptide Pro-Gly-Pro was identified as an endogenous aminopeptidase substrate for LTA4 hydrolase. Here, we determined the crystal structure of LTA4 hydrolase in complex with a Pro-Gly-Pro analog at 1.72 Å. From the structure, which includes the catalytic water, and mass spectrometric analysis of enzymatic hydrolysis products of Pro-Gly-Pro, it could be inferred that LTA4 hydrolase cleaves at the N terminus of the palindromic tripeptide. Furthermore, we designed a small molecule, 4-(4-benzylphenyl)thiazol-2-amine, denoted ARM1, that inhibits LTB4 synthesis in human neutrophils (IC50 of ∼0.5 μM) and conversion of LTA4 into LTB4 by purified LTA4H with a Ki of 2.3 μM. In contrast, 50- to 100-fold higher concentrations of ARM1 did not significantly affect hydrolysis of Pro-Gly-Pro. A 1.62-Å crystal structure of LTA4 hydrolase in a dual complex with ARM1 and the Pro-Gly-Pro analog revealed that ARM1 binds in the hydrophobic pocket that accommodates the ω-end of LTA4, distant from the aminopeptidase active site, thus providing a molecular basis for its inhibitory profile. Hence, ARM1 selectively blocks conversion of LTA4 into LTB4, although sparing the enzyme’s anti-inflammatory aminopeptidase activity (i.e., degradation and inactivation of Pro-Gly-Pro). ARM1 represents a new class of LTA4 hydrolase inhibitor that holds promise for improved anti-inflammatory properties.Leukotriene (LT) A4 hydrolase/aminopeptidase (EC 3.3.2.6) is a bifunctional zinc metalloenzyme that catalyzes the formation of the potent chemotactic agent LTB4, a key lipid mediator in the innate immune response (1, 2). Previous work has shown that LTA4 hydrolase (LTA4H) is an aminopeptidase with high affinity for N-terminal arginines of various synthetic tripeptides (3, 4). The two enzyme activities of LTA4H are exerted via distinct but overlapping active sites and depend on the catalytic zinc, bound within the signature HEXXH-(X)18-E, typical of M1 metallopeptidases (57). In LTA4H, His295, His299, and Glu318 are the zinc-binding ligands, whereas Glu296 is the general base catalyst for peptide hydrolysis (8, 9).LTA4H’s crystal structure has been determined (10). The enzyme folds into an N-terminal domain, a catalytic domain, and a C-terminal domain, each with ∼200 amino acids. The interface of the domains forms a cavity, where the active site is located (Fig. 1). The cavity narrows at the zinc-binding site, forming a tunnel into the catalytic domain. The opening and wider parts of the cavity are highly polar; the tunnel is more hydrophobic. The cavity is mostly defined by the catalytic and C-terminal domains; part of the tunnel is defined by the N-terminal domain. Bound substrate is in contact with all three domains.Open in a separate windowFig. 1.Position and extension of the active center in LTA4H. Cartoon representation of the structure of LTA4H with a tunnel for LTA4 (red mesh) and peptide substrates (blue mesh). The catalytic zinc (yellow sphere) is located in a wide section of the active site from which a narrow, L-shaped, hydrophobic tunnel protrudes ∼15 Å deeper into the protein. LTA4 is believed to bind with its ω-end at the end of the hydrophobic tunnel. The volume of the active center was calculated in CAVER (31).Recently, it was discovered that LTA4H cleaves and inactivates the chemotactic tripeptide Pro-Gly-Pro, thus identifying a previously unrecognized endogenous, physiologically significant aminopeptidase substrate (11). Inasmuch as Pro-Gly-Pro attracts neutrophils and promotes inflammation, these data also suggest that LTA4H plays dual and opposite roles during an inflammatory response (i.e., production of chemotactic LTB4, as well as inactivation of chemotactic Pro-Gly-Pro). Previous efforts to develop inhibitors of LTA4H have used the aminopeptidase activity for screening purposes, and these molecules therefore block both catalytic activities of LTA4H (12).Here, we used crystallography, MS, and a stable peptide analog to determine the binding mode of Pro-Gly-Pro at the active site of LTA4H, as well as the mechanism of peptide cleavage. Based on the structure, we also designed a lead compound that selectively blocks the conversion of LTA4 into LTB4, although sparing the hydrolysis of Pro-Gly-Pro.  相似文献   
67.
68.
Evidence for seizure‐induced cardiac dysrhythmia leading to sudden unexpected death in epilepsy (SUDEP) has been elusive. We present a patient with focal cortical dysplasia who has had epilepsy for 19 years and was undergoing presurgical evaluation. The patient did not have any cardiologic antecedents. During long‐term video–electroencephalography (EEG) monitoring, following a cluster of secondarily generalized tonic–clonic seizures (GTCS), the patient had prolonged postictal generalized EEG suppression, asystole, followed by arrhythmia, and the patient died despite cardiopulmonary resuscitation. Analysis of heart rate variability showed a marked increase in the parasympathetic activity during the period preceding the fatal seizures, compared with values measured 1 day and 7 months before, and also higher than the preictal values in a group of 10 patients with GTCS without SUDEP. The duration of the QTc interval was short (335–358 msec). This unfortunate case documented during video‐EEG monitoring indicates that autonomic imbalance and seizure‐induced cardiac dysrhythmias contribute to the pathomechanisms leading to SUDEP in patients at risk (short QT interval). A PowerPoint slide summarizing this article is available for download in the Supporting Information section here .  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号