首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1064篇
  免费   72篇
耳鼻咽喉   4篇
儿科学   27篇
妇产科学   32篇
基础医学   181篇
口腔科学   26篇
临床医学   80篇
内科学   236篇
皮肤病学   16篇
神经病学   142篇
特种医学   22篇
外科学   52篇
综合类   10篇
预防医学   77篇
眼科学   12篇
药学   109篇
中国医学   2篇
肿瘤学   108篇
  2023年   9篇
  2022年   21篇
  2021年   35篇
  2020年   25篇
  2019年   39篇
  2018年   40篇
  2017年   27篇
  2016年   41篇
  2015年   43篇
  2014年   47篇
  2013年   57篇
  2012年   77篇
  2011年   91篇
  2010年   42篇
  2009年   34篇
  2008年   57篇
  2007年   52篇
  2006年   59篇
  2005年   60篇
  2004年   46篇
  2003年   50篇
  2002年   58篇
  2001年   3篇
  2000年   5篇
  1999年   7篇
  1998年   8篇
  1997年   11篇
  1996年   3篇
  1995年   5篇
  1994年   5篇
  1993年   4篇
  1991年   4篇
  1990年   3篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1977年   4篇
  1976年   3篇
  1975年   5篇
  1974年   5篇
  1973年   2篇
  1972年   4篇
  1971年   3篇
  1969年   4篇
  1966年   2篇
排序方式: 共有1136条查询结果,搜索用时 27 毫秒
21.
22.
23.
High‐resolution peripheral quantitative computed tomography (HR‐pQCT) has recently been introduced as a clinical research tool for in vivo assessment of bone quality. The utility of this technology to address important skeletal health questions requires translation to standardized multicenter data pools. Our goal was to evaluate the feasibility of pooling data in multicenter HR‐pQCT imaging trials. Reproducibility imaging experiments were performed using structure and composition‐realistic phantoms constructed from cadaveric radii. Single‐center precision was determined by repeat scanning over short‐term (<72 hours), intermediate‐term (3–5 months), and long‐term intervals (28 months). Multicenter precision was determined by imaging the phantoms at nine different HR‐pQCT centers. Least significant change (LSC) and root mean squared coefficient of variation (RMSCV) for each interval and across centers was calculated for bone density, geometry, microstructure, and biomechanical parameters. Single‐center short‐term RMSCVs were <1% for all parameters except cortical thickness (Ct.Th) (1.1%), spatial variability in cortical thickness (Ct.Th.SD) (2.6%), standard deviation of trabecular separation (Tb.Sp.SD) (1.8%), and porosity measures (6% to 8%). Intermediate‐term RMSCVs were generally not statistically different from short‐term values. Long‐term variability was significantly greater for all density measures (0.7% to 2.0%; p < 0.05 versus short‐term) and several structure measures: cortical thickness (Ct.Th) (3.4%; p < 0.01 versus short‐term), cortical porosity (Ct.Po) (15.4%; p < 0.01 versus short‐term), and trabecular thickness (Tb.Th) (2.2%; p < 0.01 versus short‐term). Multicenter RMSCVs were also significantly higher than short‐term values: 2% to 4% for density and micro–finite element analysis (µFE) measures (p < 0.0001), 2.6% to 5.3% for morphometric measures (p < 0.001), whereas Ct.Po was 16.2% (p < 0.001). In the absence of subject motion, multicenter precision errors for HR‐pQCT parameters were generally less than 5%. Phantom‐based multicenter precision was comparable to previously reported in in vivo single‐center precision errors, although this was approximately two to five times worse than ex vivo short‐term precision. The data generated from this study will contribute to the future design and validation of standardized procedures that are broadly translatable to multicenter study designs. © 2013 American Society for Bone and Mineral Research.  相似文献   
24.
The primary goal of this study was to assess peripheral bone microarchitecture and strength in postmenopausal women with type 2 diabetes with fragility fractures (DMFx) and to compare them with postmenopausal women with type 2 diabetics without fractures (DM). Secondary goals were to assess differences in nondiabetic postmenopausal women with fragility fractures (Fx) and nondiabetic postmenopausal women without fragility fractures (Co), and in DM and Co women. Eighty women (mean age 61.3 ± 5.7 years) were recruited into these four groups (DMFx, DM, Fx, and Co; n = 20 per group). Participants underwent dual‐energy X‐ray absorptiometry (DXA) and high‐resolution peripheral quantitative computed tomography (HR‐pQCT) of the ultradistal and distal radius and tibia. In the HR‐pQCT images volumetric bone mineral density and cortical and trabecular structure measures, including cortical porosity, were calculated. Bone strength was estimated using micro–finite element analysis (µFEA). Differential strength estimates were obtained with and without open cortical pores. At the ultradistal and distal tibia, DMFx had greater intracortical pore volume (+52.6%, p = 0.009; +95.4%, p = 0.020), relative porosity (+58.1%, p = 0.005; +87.9%, p = 0.011) and endocortical bone surface (+10.9%, p = 0.031; +11.5%, p = 0.019) than DM. At the distal radius DMFx had 4.7‐fold greater relative porosity (p < 0.0001) than DM. At the ultradistal radius, intracortical pore volume was significantly higher in DMFx than DM (+67.8%, p = 0.018). DMFx also displayed larger trabecular heterogeneity (ultradistal radius: +36.8%, p = 0.035), and lower total and cortical BMD (ultradistal tibia: ?12.6%, p = 0.031; ?6.8%, p = 0.011) than DM. DMFx exhibited significantly higher pore‐related deficits in stiffness, failure load, and cortical load fraction at the ultradistal and distal tibia, and the distal radius than DM. Comparing nondiabetic Fx and Co, we only found a nonsignificant trend with increase in pore volume (+38.9%, p = 0.060) at the ultradistal radius. The results of our study suggest that severe deficits in cortical bone quality are responsible for fragility fractures in postmenopausal diabetic women. © 2013 American Society for Bone and Mineral Research  相似文献   
25.
Purpose

Perigenual anterior cingulate cortex (pACC) is a neural convergence site for social stress-related risk factors for mental health, including ethnic minority status. Current social status, a strong predictor of mental and somatic health, has been related to gray matter volume in this region, but the effects of social mobility over the lifespan are unknown and may differ in minorities. Recent studies suggest a diminished health return of upward social mobility for ethnic minority individuals, potentially due to sustained stress-associated experiences and subsequent activation of the neural stress response system.

Methods

To address this issue, we studied an ethnic minority sample with strong upward social mobility. In a cross-sectional design, we examined 64 young adult native German and 76 ethnic minority individuals with comparable sociodemographic attributes using whole-brain structural magnetic resonance imaging.

Results

Results showed a significant group-dependent interaction between perceived upward social mobility and pACC gray matter volume, with a significant negative association in the ethnic minority individuals. Post-hoc analysis showed a significant mediation of the relationship between perceived upward social mobility and pACC volume by perceived chronic stress, a variable that was significantly correlated with perceived discrimination in our ethnic minority group.

Conclusion

Our findings extend prior work by pointing to a biological signature of the “allostatic costs” of socioeconomic attainment in socially disadvantaged upwardly mobile individuals in a key neural node implicated in the regulation of stress and negative affect.

  相似文献   
26.
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz - Das Bundesverfassungsgericht überprüft aktuell, ob das Vergabeverfahren der Medizinstudienplätze mit dem...  相似文献   
27.
The aim of our prospective pilot study with exploratory analysis was to compare longitudinal and apical foetal speckle tracking echocardiography (STE) using tissue motion annular displacement (TMAD) and segmental longitudinal strain (SLS). We compared two different STE quantification tools in a longitudinal and apical four-chamber view in 57 normal foetuses between 20 and 40 wk of gestation. Myocardial mechanical dyssynchrony and strain were assessed using offline quantification software (QLab Version 10.3, Philips Medical Systems, Andover, MA, USA). We compared the dyssynchrony measurements with TMAD and SLS in longitudinal and apical four-chamber views. Furthermore, we examined the segmental strain values of both ventricles with SLS and compared the differences between longitudinal and apical measurements. Dyssynchrony measurements with TMAD and SLS and strain measurements with SLS were feasible in all cases. In the apical view, the dyssynchrony measurements with TMAD were systematically greater than those achieved with SLS (p < 0.001). For the longitudinal view, no differences were observed between tools (p?=?0.153). The application of SLS provided similar results for dyssynchrony in both views (intra-class correlation coefficient [ICC]?=?0.281, p?=?0.623), but the strain measurements in the left and right ventricles differed significantly between views (ICC?=?–0.082, p?=?0.011, and ICC?=?–0.061, p?=?0.024, respectively). For TMAD, we found large differences in the dyssynchrony values between longitudinal and apical assessment (ICC?=?–0.060, p?=?0.03). Furthermore, TMAD exhibited reduced accuracy in the system's automatic tracking algorithm, limiting the data quality. The dyssynchrony assessment is affected less by the foetal position in SLS than in TMAD. The strain readings in SLS varied depending on the view in which they were assessed. The application of TMAD cannot be recommended for foetal STE.  相似文献   
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号