首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43802篇
  免费   2964篇
  国内免费   154篇
耳鼻咽喉   638篇
儿科学   1047篇
妇产科学   508篇
基础医学   5787篇
口腔科学   650篇
临床医学   4268篇
内科学   9754篇
皮肤病学   374篇
神经病学   4539篇
特种医学   1843篇
外国民族医学   1篇
外科学   7208篇
综合类   392篇
一般理论   76篇
预防医学   3046篇
眼科学   692篇
药学   3042篇
中国医学   66篇
肿瘤学   2989篇
  2023年   214篇
  2022年   323篇
  2021年   940篇
  2020年   570篇
  2019年   932篇
  2018年   1129篇
  2017年   749篇
  2016年   875篇
  2015年   1037篇
  2014年   1468篇
  2013年   1946篇
  2012年   3097篇
  2011年   3215篇
  2010年   1875篇
  2009年   1591篇
  2008年   2926篇
  2007年   3058篇
  2006年   2955篇
  2005年   2973篇
  2004年   2705篇
  2003年   2531篇
  2002年   2440篇
  2001年   476篇
  2000年   355篇
  1999年   467篇
  1998年   519篇
  1997年   416篇
  1996年   354篇
  1995年   344篇
  1994年   284篇
  1993年   273篇
  1992年   288篇
  1991年   285篇
  1990年   244篇
  1989年   236篇
  1988年   185篇
  1987年   184篇
  1986年   189篇
  1985年   198篇
  1984年   228篇
  1983年   194篇
  1982年   202篇
  1981年   180篇
  1980年   140篇
  1979年   105篇
  1978年   100篇
  1977年   89篇
  1976年   68篇
  1973年   70篇
  1972年   67篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
991.
992.
993.
BackgroundA major impediment to performing virological field studies in developing nations is the lack of ultra-low freezers as well as the expense and difficulty of shipping frozen samples. A commercially available product, ViveST?, was developed to preserve nucleic acids at ambient temperature for use in specimen storage and transportation. However, its applications as a viral storage, transport and recovery device have not been evaluated.ObjectiveTo examine the ability of ViveST to preserve live virus following storage at ambient temperature.Study designA panel of six viruses was stored at ambient temperature (~22 °C) in ViveST with fetal bovine serum (FBS), or ViveST with minimal essential media (MEM) and compared with virus stored in universal transport media (M4RT), MEM, and FBS alone. Stored viruses included: human adenovirus (14p), dengue virus 2 (16608), echovirus 3 (Morrisey), human rhinovirus 15 (1734), Coxsackie virus B5 (Faulkner), and herpes simplex virus 1 (HF). After 7 days storage at ambient temperature, virus recovery was measured via titration using viral plaque assays or focus-forming unit assays.ResultsViral titer studies indicate that ViveST with either FBS or M4RT preserved/recovered 5 different viruses for 1 week at ambient temperature. MEM preserved 4 viruses while FBS and ViveST with MEM preserved 3 viruses each. Statistical analyses indicate that M4RT and ViveST with FBS preserved significantly more virus than the other treatments.ConclusionsThese data suggest that ViveST with either FBS or M4RT may be useful in field specimen collection scenarios where ultra-cold storage is not available.  相似文献   
994.

Background

Point-of-care international normalized ratio (INR) monitoring devices simplify warfarin management by allowing selected patients to monitor their own therapy in their homes. Patient self-testing (PST) has been shown to improve the clinical outcomes of warfarin therapy compared to usual care.

Objective

To compare management of warfarin therapy using PST combined with online supervision by physicians via a custom system with usual warfarin management, which involved laboratory testing and physician dosing.

Methods

Interested patients were recruited via community pharmacies to participate in a warfarin PST training program. Participants were required to have a long-term indication for warfarin, have been taking warfarin for at least 6 months, and have Internet access in their home. The training involved two sessions covering theoretical aspects of warfarin therapy, use of the CoaguChek XS, and the study website. Following training, patients monitored their INR once weekly for up to 3 months. Patients and physicians utilized a secure website to communicate INR values, dosage recommendations, and clinical incidents. Physicians provided a 6-12 month history of INR results for comparison with study results. The percentage of time spent within the therapeutic INR range (TTR) was the primary outcome, with participants acting as their own historical controls. The percentage of INR tests in range and participant satisfaction were secondary outcomes.

Results

Sixteen patients completed training requirements. The mean age of participants was 69.8 (SD 10.1) years. TTR improved significantly from 66.4% to 78.4% during PST (P=.01), and the number of tests within the target range also improved significantly (from 66.0% at prior to the study to 75.9% during PST; P=.04). Patients and physicians expressed a high degree of satisfaction with the monitoring strategy and online system.

Conclusions

PST supported by an online system for supervision was associated with improved INR control compared to usual care in a small group of elderly patients. Further research is warranted to investigate the clinical outcomes and cost-effectiveness of online systems to support patients monitoring medications and chronic conditions in the home.  相似文献   
995.
It is now well-established that boundaries separating tetragonal-like (T) and rhombohedral-like (R) phases in BiFeO3 thin films can show enhanced electrical conductivity. However, the origin of this conductivity remains elusive. Here, we study mixed-phase BiFeO3 thin films, where local populations of T and R can be readily altered using stress and electric fields. We observe that phase boundary electrical conductivity in regions which have undergone stress-writing is significantly greater than in the virgin microstructure. We use high-end electron microscopy techniques to identify key differences between the R–T boundaries present in stress-written and as-grown microstructures, to gain a better understanding of the mechanism responsible for electrical conduction. We find that point defects (and associated mixed valence states) are present in both electrically conducting and non-conducting regions; crucially, in both cases, the spatial distribution of defects is relatively homogeneous: there is no evidence of phase boundary defect aggregation. Atomic resolution imaging reveals that the only significant difference between non-conducting and conducting boundaries is the elastic distortion evident – detailed analysis of localised crystallography shows that the strain accommodation across the R–T boundaries is much more extensive in stress-written than in as-grown microstructures; this has a substantial effect on the straightening of local bonds within regions seen to electrically conduct. This work therefore offers distinct evidence that the elastic distortion is more important than point defect accumulation in determining the phase boundary conduction properties in mixed-phase BiFeO3.

The localized crystallography of conducting and non-conducting phase boundaries in mixed-phase BiFeO3 is directly compared using scanning transmission electron microscopy techniques.

The complexity of electrical conductivity in domain walls in BiFeO3 (and in ferroics in general) is as multifaceted as ever. Various influences such as point defect accumulation, octahedral rotations, magnetic interactions and electrostatic discontinuities are thought to be possible mechanisms at play,1–8 either alone or in combination. The research area of domain wall conductivity is currently flourishing and the view that domain walls offer exciting prospects in terms of engineering systems in which the domain walls act as distinct identities to the domains which they separate is now widely accepted. We believe that it is pertinent timing to address a lack of experimental investigations providing meaningful direct comparison of the localised crystallography and defect structure responsible for observed enhanced electrical conductivity. This study is stimulated by the interesting discoveries of conductive phase boundaries, specifically, in mixed-phase BiFeO3.9,10 By tuning the local populations of the tetragonal-like (T) and rhombohedral-like (R) phases in BiFeO3 thin films via electric and stress fields, we demonstrate that electrical conductivity along phase boundaries is significantly greater after stress-writing. We probe the key crystallographic differences between the R–T boundaries created via stress, compared to those already present in the as-grown microstructures, to disentangle the mechanism determining electrical conduction in mixed-phase BiFeO3.The growth of BiFeO3 on substrates enforcing a large in-plane compressive strain drives the formation of monoclinic phases that are approximately rhombohedral (R) and tetragonal (T). Similar to materials such as PbZr0.53Ti0.47O3 that straddle a morphotropic phase boundary, highly strained BiFeO3 can readily undergo phase transitions between the R and T phases (and vice versa). The high-strain T phase exhibits a tetragonal-like symmetry (almost P4mm) with a c/a ratio of ∼1.2; the Fe displacement towards one of the apical oxygens along [001]pc results in fivefold oxygen coordinated Fe, and an enhanced polarisation roughly 1.5 times that of the bulk single crystal.7,11 The R phase, on the other hand, resembles the rhombohedral bulk phase (almost R3c), where the Fe is octahedrally coordinated, with a ferroelectric distortion along the pseudocubic [111]pc axis, and antiferrodistortive rotations of the FeO6 octahedra around [111]pc occur. The crystal structure and misfit strain associated with the native (as-grown) R and T phases is reported elsewhere, both theoretically12–15 and experimentally,6,7,16–21 making it well-known that the ferroelectric and the antiferrodistortive degrees of freedom in mixed-phase BiFeO3 set it apart from other typical perovskites. Notably, despite the ample evidence provided on phase reversal and characterisation of the as-grown phases, most of the literature (especially regarding electric field cycling of the mixed-phase state) has been primarily concerned with X-ray diffraction (XRD) i.e. global measurements that will not necessarily pick up on the more subtle, atomic-scale aspects of structure local to the phase boundaries. The importance of the study described herein resides in the uniqueness of creating microstructures such that both the as-grown and stress-induced R–T phase boundaries can be included within one single cross-sectional transmission electron microscopy (TEM) lamella; this gives the best possible scenario to allow meaningful direct comparison of the localised crystallography and defect structure responsible for the observed enhanced electrical conductivity found at stress-induced phase boundaries.  相似文献   
996.
Linear structured illumination microscopy (SIM) is a super-resolution microscopy technique that does not impose photophysics requirements on fluorescent samples. Multicolor SIM implementations typically rely on liquid crystal on silicon (LCoS) spatial light modulators (SLM’s) for patterning the excitation light, but digital micromirror devices (DMD’s) are a promising alternative, owing to their lower cost and higher speed. However, existing coherent DMD SIM implementations use only a single wavelength of light, limited by the lack of efficient approaches for solving the blazed grating effect for polychromatic light. We develop the requisite quantitative tools, including a closed form solution of the blaze and diffraction conditions, forward models of DMD diffraction and pattern projection, and a model of DMD aberrations. Based on these advances, we constructed a three-color DMD microscope, quantified the effect of aberrations from the DMD, developed a high-resolution optical transfer function measurement technique, and demonstrated SIM on fixed and live cells. This opens the door to applying DMD’s in polychromatic applications previously restricted to LCoS SLM’s.  相似文献   
997.
998.
The synthesis of nanostructured sub-microspheres of TiO2 anatase with hierarchical nano- and mesoporosity was successfully achieved by using an innovative approach that applies the principles of acidic digestion to microwave (MW) solvothermal synthesis. This process, termed flash microwave-assisted solvothermal (FMS) synthesis, facilitates the formation of spherical particles without surfactants or templating agents, exploiting the rapid reaction kinetics engendered by MW heating. Unlike many other MW-assisted solvothermal methods, the application of constant MW power leads to a rapid increase of the autogenous pressure, inducing burst-nucleation of small primary crystallites and subsequent rapid agglomeration into secondary particles, with reaction times reduced to minute-timescales. The use of non-aqueous polar solvents such as ethanol is key to the production of regular spheres with a narrow size distribution, composed of nanocrystallites. Morphology, porosity, specific surface area, phase composition, crystallite size and optical properties of the particles can be controlled via a judicious selection of physical and chemical synthesis parameters, especially precursor choice and acid concentration. The complex structure of the particles leads to surface areas of up to ca. 500 m2 g−1 with intergranular mesoporosity. The as-synthesised FMS particles show increased adsorption under dark conditions and selective de-ethylation of rhodamine B under visible light compared to a commercial photocatalyst (Degussa P25). The photodegradation mechanism hinges on the capacity of the spheres to accept electrons from the photoexcited state of molecules at the particle surface, with the large sphere surface area maximising adsorption capacity and improving the efficiency of the photocatalytic processes. The singular characteristics and properties of the particles could pave the way for further applications in water purification and optoelectronic devices.

Photoactive nanostructured TiO2 sub-microspheres can be fabricated by “microwave flash synthesis” in minute timescales.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号