首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1776篇
  免费   158篇
  国内免费   10篇
耳鼻咽喉   12篇
儿科学   46篇
妇产科学   19篇
基础医学   213篇
口腔科学   21篇
临床医学   232篇
内科学   313篇
皮肤病学   45篇
神经病学   103篇
特种医学   206篇
外科学   152篇
综合类   45篇
一般理论   1篇
预防医学   186篇
眼科学   136篇
药学   109篇
肿瘤学   105篇
  2021年   15篇
  2020年   13篇
  2019年   14篇
  2018年   17篇
  2016年   19篇
  2015年   21篇
  2014年   25篇
  2013年   43篇
  2012年   59篇
  2011年   77篇
  2010年   46篇
  2009年   41篇
  2008年   69篇
  2007年   78篇
  2006年   69篇
  2005年   64篇
  2004年   59篇
  2003年   50篇
  2002年   52篇
  2001年   43篇
  2000年   49篇
  1999年   47篇
  1998年   40篇
  1997年   42篇
  1996年   37篇
  1995年   26篇
  1994年   32篇
  1993年   21篇
  1992年   40篇
  1991年   36篇
  1990年   26篇
  1989年   49篇
  1988年   50篇
  1987年   44篇
  1986年   36篇
  1985年   40篇
  1984年   43篇
  1983年   25篇
  1982年   27篇
  1981年   17篇
  1980年   23篇
  1979年   21篇
  1978年   23篇
  1977年   23篇
  1976年   23篇
  1975年   26篇
  1974年   19篇
  1971年   14篇
  1970年   13篇
  1968年   14篇
排序方式: 共有1944条查询结果,搜索用时 171 毫秒
31.
Objective: We performed this study in order to evaluate the usefulness of a new balloon expandable stent for maintaining ductal patency in a neonatal piglet model and to evaluate the ability to re-expand the stent weeks following initial implantation. Background: Maintaining patency of the ductus arteriosus without administration of Prostaglandin E has been reported previously using balloon dilation and stent implantation techniques. However, the experience is limited and the currently available stents are not modified for neonates. Methods: 14 newborn piglets all at age 12 days and median weight 3.6 Kg (range 2.7-4.3 Kg), underwent initial balloon dilation of the ductus arteriosus. Angiography after dilation demonstrated no significant left to right shunt. All piglets underwent successful stent (3.5 mm x 17 mm) placement in the ductus arteriosus. Results: Percutaneous ductal stent implantation via the arterial route was successful in all piglets with angiographic demonstration of a significant left to right shunt. Follow-up studies at weekly intervals with color flow Doppler were used to confirm patency of the stents. In 3 piglets the stent was not patent at initial follow-up and autopsy revealed sub-optimal stent placement. In two animals the stent was later re-expanded to 4 mm at 22 days, in one to 4 mm at 30 days and in one to 6 mm at 15 days, maintaining flow for an additional period of 15 to 34 days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
32.
Davis  GD; Fulton  RE; Ritter  DG; Mair  DD; McGoon  DC 《Radiology》1978,128(1):133-144
Of 181 patients with severe congenital pulmonary atresia and ventricular septal defect or "type IV truncus" (an obsolete term), all but 11% had true central pulmonary arteries. These arteries were demonstrable by large serial biplane angiograms using multiple selective injections into collateral vessels, frequent photographic subtraction, and occasional pulmonary vein-wedge angiograms. These techniques are extremely important for accurate diagnosis and in planning corrective or palliative surgery, which was done in 77% of patients with pulmonary arteries.  相似文献   
33.
PURPOSE: To prospectively compare standard radiation therapy (RT) with an abbreviated course of RT in older patients with glioblastoma multiforme (GBM). PATIENTS AND METHODS: One hundred patients with GBM, age 60 years or older, were randomly assigned after surgery to receive either standard RT (60 Gy in 30 fractions over 6 weeks) or a shorter course of RT (40 Gy in 15 fractions over 3 weeks). The primary end point was overall survival. The secondary end points were proportionate survival at 6 months, health-related quality of life (HRQoL), and corticosteroid requirement. HRQoL was assessed using the Karnofsky performance status (KPS) and Functional Assessment of Cancer Therapy-Brain (FACT-Br). RESULTS: All patients had died at the time of analysis. Overall survival times measured from randomization were similar at 5.1 months for standard RT versus 5.6 months for the shorter course (log-rank test, P =.57). The survival probabilities at 6 months were also similar at 44.7% for standard RT versus 41.7% for the shorter course (lower-bound 95% CI, -13.7). KPS scores varied markedly but were not significantly different between the two groups (Wilcoxon test, P =.63). Low completion rates of the FACT-Br (45%) precluded meaningful comparisons between the two groups. Of patients completing RT as planned, 49% of patients (standard RT) versus 23% required an increase in posttreatment corticosteroid dosage (chi(2) test, P =.02). CONCLUSION: There is no difference in survival between patients receiving standard RT or short-course RT. In view of the similar KPS scores, decreased increment in corticosteroid requirement, and reduced treatment time, the abbreviated course of RT seems to be a reasonable treatment option for older patients with GBM.  相似文献   
34.
35.
36.
37.
38.
Leaf water potential is a critical indicator of plant water status, integrating soil moisture status, plant physiology, and environmental conditions. There are few tools for measuring plant water status (water potential) in situ, presenting a critical barrier for developing appropriate phenotyping (measurement) methods for crop development and modeling efforts aimed at understanding water transport in plants. Here, we present the development of an in situ, minimally disruptive hydrogel nanoreporter (AquaDust) for measuring leaf water potential. The gel matrix responds to changes in water potential in its local environment by swelling; the distance between covalently linked dyes changes with the reconfiguration of the polymer, leading to changes in the emission spectrum via Förster Resonance Energy Transfer (FRET). Upon infiltration into leaves, the nanoparticles localize within the apoplastic space in the mesophyll; they do not enter the cytoplasm or the xylem. We characterize the physical basis for AquaDust’s response and demonstrate its function in intact maize (Zea mays L.) leaves as a reporter of leaf water potential. We use AquaDust to measure gradients of water potential along intact, actively transpiring leaves as a function of water status; the localized nature of the reporters allows us to define a hydraulic model that distinguishes resistances inside and outside the xylem. We also present field measurements with AquaDust through a full diurnal cycle to confirm the robustness of the technique and of our model. We conclude that AquaDust offers potential opportunities for high-throughput field measurements and spatially resolved studies of water relations within plant tissues.

Plant life depends on water availability. In managing this demand, irrigated agriculture accounts for 70% of all human water use (1). Physiologically, the process of transpiration (E) dominates this demand for water (Fig. 1A): Solar thermal radiation and the unsaturated relative humidity in the atmosphere drive evaporation from the wet internal surfaces of leaves; this water loss pulls water up through the plant’s vascular tissue (xylem) and out of the soil. This flow occurs along a gradient in the chemical potential of water, or water potential, ψ [MPa] (2). Studies of water relations and stress physiology over the past decades have found that values of ψ along the path of E (the soil–plant–atmosphere continuum [SPAC]) correlate with plant growth, crop yield and quality, susceptibility to disease, and the balance between water loss due to E and the uptake and assimilation of carbon dioxide (water-use efficiency) (35).Open in a separate windowFig. 1.AquaDust as an in situ reporter of water potential (ψ). (A) Schematic representation of a maize plant undergoing transpiration (E) in a dynamic environment driven by solar thermal radiation (Qrad) and photosynthetically active radiation (PAR), wind speed (u), temperature (T), vapor pressure deficit (VPD), and soil water potential (ψsoil). Water flows through the plant (blue arrows) along a gradient in water potential (ψ). Zones on the leaves infiltrated with AquaDust serve as reporters of the local leaf water potential, ψleaf, via a short (30 s), minimally invasive measurement of FRET efficiency (ζ) with a leaf clamp. (B) Schematic representations of infiltration of a suspension of AquaDust and of the distribution of AquaDust within the cross-section of a leaf. AquaDust passes through the stomata and localizes in the apoplastic spaces within the mesophyll; the particles are excluded from symplastic spaces and the vascular bundle. (C) Schematic diagrams showing mechanism of AquaDust response: The swollen, “wet” state when water potential in its local environment, ψenv=0 (i.e., no stress condition), results in low FRET between donor (green circles) and acceptor (yellow circles) dye (Upper); and the shrunken, “dry” state when ψenv<0 (i.e., stressed condition) results in high FRET between fluorophores, thereby altering the emission spectra (Lower). (D) Fluorescent dyes were chosen to minimize reabsorption of AquaDust emission from chlorophyll; comparison of representative fluorescent emission from AquaDust (donor peak at 520 nm and acceptor peak at 580 nm) with the absorption spectra of chlorophyll and autofluorescence of maize leaf.Due to the recognized importance of water potential in controlling plant function, plant scientists have spent considerable effort devising accurate and reliable methods to measure water potential of the soil, stem, and leaf (6). Of these, plant water potentials, and particularly leaf water potential (ψleaf), represent valuable indicators of plant water status because they integrate both environmental conditions (e.g., soil water availability and evaporative demand) and plant physiological processes (e.g., root water uptake, xylem transport, and stomatal regulation) (7, 8). To date, techniques to measure ψleaf remain either slow, destructive, or indirect. The current tools (e.g., Scholander pressure chamber, psychrometer, and pressure probe) involve disruption of the tissue, the microenvironment, or both (911). For example, the widely used pressure chamber requires excision of leaves or stems for the measurement of ψleaf. Other techniques, such as stem and leaf psychrometry, require intimate contact with the tissue, and accurate and repeatable measurements are difficult to obtain (9, 12). These limitations have hindered the study of spatiotemporal water-potential gradients along the SPAC and the development of high-throughput strategies to phenotype based on tissue water potential (13). Additionally, current methods for measuring ψleaf provide averages over tissues in the leaf. This characteristic makes the dissection of water relations on subleaf scales challenging, such that important questions remain, for example, about the partitioning of hydraulic resistances within leaves between the xylem and mesophyll (1416).These outstanding challenges in the measurement of water status in planta motivated us to develop the measurement strategy presented here, AquaDust, with the following characteristics: 1) Minimally disruptive: Compatible with simple, rapid measurements on intact leaves. Fig. 1A presents our approach, in which AquaDust reporters infiltrated into the mesophyll of the leaf provide an externally accessible optical signal that correlates with the local water potential. 2) Localized: allowing for access to the values of water potential at a well-defined location along the path of transpiration in the leaf tissue. Fig. 1B shows a schematic representation of AquaDust particles localized in the apoplastic volume within the mesophyll, at the end of the hydraulic path for liquid water within the plant. 3) Sensitive and specific: capable of resolving water potentials across the physiologically relevant range (3<ψ<0 MPa) and with minimal sensitivity to other physical (e.g., temperature) and chemical (e.g., pH) variables. Fig. 1C presents a schematic representation of an AquaDust particle formed of hydrogel, a highly tunable material that undergoes a structural response to changes in local water potential (swollen when wet; collapsed when dry). We couple the swelling behavior of the particle to an optical signal via the incorporation of fluorescence dyes (green and yellow circles in Fig. 1C) that undergo variable Förster Resonance Energy Transfer (FRET) as a function of spatial separation. Fig. 1D presents typical AquaDust spectra at high (wet; green curve) and low (dry; yellow curve) water potentials. A change in water potential leads to a change in the relative intensity of the two peaks in the AquaDust spectrum, such that the relative FRET efficiency, ζ=f(ID,IA), can serve as a measure of water potential. 4) Inert: nondisruptive of the physiological properties of the leaf (e.g., photosynthetic capacity, transpiration rate, etc.).In this paper, we present the development, characterization, and application of AquaDust. We show that AquaDust provides a robust, reproducible response of its fluorescence spectra to changes in leaf water potential in situ and across the usual physiological range. We apply our approach to quantify the spatial gradients of water potential along individual leaves undergoing active transpiration and across a range of soil water potentials. With these measurements, we show that the localization of AquaDust in the mesophyll allows us to quantify the importance of hydraulic resistances outside the xylem. We further use AquaDust to measure the diurnal dynamics of ψleaf under field conditions, with repeated measurements on individual, intact leaves. These measurements demonstrate the field-readiness of our techniques and validate the leaf hydraulic model we have developed. We conclude that AquaDust offers a powerful basis for tracking, spatially and temporally, water potential in planta to study the mechanisms by which it couples to both biological and physical processes to define plant function.  相似文献   
39.
This article represents the proceedings of a symposium at the 2003 annual meeting of the Research Society on Alcoholism in Fort Lauderdale, FL, organized by Theodora Duka and chaired by Dai Stephens. The purpose of the symposium was to examine the effects of multiple experiences of withdrawal from alcohol in animals made dependent on alcohol and in humans who are alcohol dependent. Parallels were drawn to the effects of repeated short-lived high-content alcohol exposures in animals and in humans who are social drinkers but indulge in binge drinking. The presentations were (1) Multiple detoxifications and risk of relapse in abstinent alcoholics, by John Gentry and Robert Malcolm; (2) Emotional and cognitive impairments after long-term use of alcohol: relationship to multiple detoxifications and binge drinking, by Theodora Duka; (3) The effect of repeated withdrawal from ethanol on conditioning to appetitive stimuli, by Tamzin Ripley, Gilyanna Borlikova, and Dai Stephens; (4) Alcohol withdrawal kindling: electrographic measures in a murine model of behavioral seizure sensitization, by Lynn Veatch and Howard Becker; and (5) Binge drinking induced changes in CNS, by Fulton Crews.  相似文献   
40.

Background:

Binge drinking is prevalent during adolescence and may have effects on the adult brain and behavior. The present study investigated whether adolescent intermittent ethanol exposure alters adult risky choice and prefrontal dopaminergic and forebrain cholinergic neuronal marker levels in male Wistar rats.

Methods:

Adolescent (postnatal day 28–53) rats were administered 5g/kg of 25% (vol/vol) ethanol 3 times/d in a 2-days–on/2-days–off exposure pattern. In adulthood, risky choice was assessed in the probability discounting task with descending and ascending series of large reward probabilities and after acute ethanol challenge. Immunohistochemical analyses assessed tyrosine hydroxylase, a marker of dopamine and norepinephrine in the prelimbic and infralimbic cortices, and choline acetyltransferase, a marker of cholinergic neurons, in the basal forebrain.

Results:

All of the rats preferred the large reward when it was delivered with high probability. When the large reward became unlikely, control rats preferred the smaller, safe reward, whereas adolescent intermittent ethanol-exposed rats continued to prefer the risky alternative. Acute ethanol had no effect on risky choice in either group of rats. Tyrosine hydroxylase (prelimbic cortex only) and choline acetyltransferase immunoreactivity levels were decreased in adolescent intermittent ethanol-exposed rats compared with controls. Risky choice was negatively correlated with choline acetyltransferase, implicating decreased forebrain cholinergic activity in risky choice.

Conclusions:

The decreases in tyrosine hydroxylase and choline acetyltransferase immunoreactivity suggest that adolescent intermittent ethanol exposure has enduring neural effects that may lead to altered adult behaviors, such as increased risky decision making. In humans, increased risky decision making could lead to maladaptive, potentially harmful consequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号