首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   3篇
  国内免费   19篇
儿科学   10篇
妇产科学   1篇
基础医学   7篇
口腔科学   1篇
临床医学   20篇
内科学   6篇
皮肤病学   2篇
神经病学   2篇
特种医学   17篇
外科学   6篇
综合类   8篇
预防医学   1篇
眼科学   1篇
药学   55篇
肿瘤学   8篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2011年   2篇
  2010年   3篇
  2007年   5篇
  2006年   2篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   5篇
  2000年   5篇
  1998年   6篇
  1997年   14篇
  1996年   15篇
  1995年   10篇
  1994年   11篇
  1993年   8篇
  1992年   2篇
  1991年   14篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1986年   1篇
  1983年   2篇
  1980年   4篇
  1978年   1篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1963年   1篇
  1961年   1篇
  1960年   2篇
  1903年   1篇
排序方式: 共有145条查询结果,搜索用时 0 毫秒
141.
Microorganisms typically adapt to environmental cues by turning on and off the expression of virulence genes which, in turn, allows for optimal growth and survival within different environmental niches. This adaptation strategy includes sensing and responding to changes in nutrients, pH, temperature, oxygen tension, redox potential, microbial flora, and osmolarity. For a bacterium to adhere to, penetrate, replicate in, and colonize host cells, it is critical that virulence genes are expressed during certain periods of the infection process. Thus, throughout the different stages of an infection, different sets of virulence factors are turned on and off in response to different environmental signals, allowing the bacterium to effectively adapt to its varying niche. In this review, we focus on the regulation of virulence gene expression in two pathogens which have been implicated as major etiological agents in adult and juvenile periodontal diseases: Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans. Understanding the mechanisms of virulence gene expression in response to the local environment of the host will provide crucial information in the development of effective treatments targeted at eradication of these periodontal disease pathogens.  相似文献   
142.
In utero fetal infection of rubella virus (RV), a positive-stranded RNA virus, frequently induces birth defects if contracted in the first trimester of pregnancy. The underlying mechanism of RV-induced birth defects is not known. Birth defects are also common in certain DNA viral infections such as human cytomegalovirus (HCMV). During HCMV infection, one of its proteins interacts with a cell growth regulatory protein, the retinoblastoma protein (Rb) and stimulates DNA synthesis which is associated with chromosomal damage and cellular mitotic arrest. These affects have been implicated in HCMV induced teratogenesis. Since RV and HCMV both cause teratogenesis, we postulated that during RV infection, a virus-encoded protein might interact with Rb and affect fetal cell growth. In the present study, we have identified a known Rb-binding motif, L×C×E (LPCAE) in the carboxy-terminal half of the putative replicase (NSP90) of RV and demonstrated that the C-terminal region specifically binds to GST-Rb in vitro. Further, by coimmunoprecipitating NSP90 and Rb using specific antibodies to respective proteins, we have confirmed that NSP90 specifically binds to Rb in vivo as well. In addition, RV replication was shown to be less in null-mutant (Rb−/−) mouse embryonic fibroblast cells than in wild-type (Rb+/+) cells, suggesting a possible physiological role for this interaction. Thus, in facilitating RV replication, binding of NSP90 to Rb potentially alters the cell growth regulatory property of Rb, and this could be one of the initial steps in RV-induced teratogenesis. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
143.
Familial hypomagnesemia with secondary hypocalcemia (HSH) (MIM 307600) was studied in three inbred Bedouin kindreds from Israel. The three kindreds, one extended and two nuclear families, contained 13 affected individuals, 11 males and two females. Assuming that the individuals affected with hypomagnesemia shared a chromosomal region inherited from a common ancestor, we used a DNA pooling strategy in a genome-wide search for loci which show homozygosity for shared alleles in affected individuals. DNA samples from affected individuals within a single kindred were pooled and used as the template for PCR amplification of short tandem repeat polymorphic markers (STRPs). Pooled DNA from unaffected siblings and parents were used as controls. A shift towards homozygosity was observed in the affected DNA pool compared with the control pools with D9S301 (GATA7D12). Genotyping of individual DNA samples with D9S301 and several flanking markers confirmed linkage to chromosome 9 with maximum LOD scores of 3.4 (theta = 0.05), 3.7 (theta = 0) and 2.3 (theta = 0) for the three families. We have identified a 14 cM interval on chromosome 9 (9q12-9q22.2), flanked by proximal marker D9S1874 and distal marker D9S1807, within which all affected individuals from the three kindreds are homozygous for a shared haplotype. The disease segregates with a common affected haplotype in the three families, suggesting that hypomagnesemia is caused by a common ancestral mutation in these families. Although HSH has been previously reported to be X linked, these linkage data demonstrate that the disorder is an autosomal recessive disease in these kindreds. Mapping of a chromosomal breakpoint in a somatic cell line established from a patient with HSH and a balanced X;9 translocation placed the chromosomal breakpoint in a 500 kb region flanked by D9S1844 and D9S273. Identification of the gene responsible for hypomagnesemia will provide insight into the regulation of this essential cation.   相似文献   
144.
In this study, we describe the development of an efficient transpositional mutagenesis system for Porphyromonas gingivalis using the Bacteroides fragilis transposon Tn4351. Using this system, we have isolated and characterized a Tn4351-generated mutant of P. gingivalis A7436, designated MSM-1, which exhibits enhanced resistance to polymorphonuclear leukocyte (PMN) phagocytosis and killing. P. gingivalis MSM-1 was initially selected based on its colony morphology; MSM-1 appeared as a mucoid, beige-pigmented colony. Analysis of P. gingivalis MSM-1 by electron microscopy and staining with ruthenium red revealed the presence of a thick ruthenium red-staining layer that was twice the thickness of this layer observed in the parent strain. P. gingivalis MSM-1 was found to be more hydrophilic than strain A7436 by hydrocarbon partitioning. Analysis of phenol-water extracts prepared from P. gingivalis A7436 and MSM-1 by Western (immunoblot) analysis and immunodiffusion with hyperimmune sera raised against A7436 and MSM-1 revealed the loss of a high-molecular-weight anionic polysaccharide component in extracts prepared from MSM-1. P. gingivalis MSM-1 was also found to be more resistant to PMN phagocytosis and intracellular killing than the parent strain, as assessed in a fluorochrome phagocytosis microassay. These differences were statistically significant (P < 0.05) when comparing PMN phagocytosis in nonimmune serum and intracellular killing in nonimmune and immune sera. P. gingivalis MSM-1 was also more resistant to killing by crude granule extracts from PMNs than was P. gingivalis A7436. These results indicate that the increased evasion of PMN phagocytosis and killing exhibited by P. gingivalis MSM-1 may result from alterations in polysaccharide-containing antigens.  相似文献   
145.
BACKGROUND: The risk of adverse consequences of virus-inactivation procedures for plasma and cellular blood components must be less than the risk of transfusion-associated viral disease. Previous studies demonstrated that methylene blue, which is currently used in Europe for virus inactivation in fresh-frozen plasma, can elicit mutations in bacterial test systems. This study investigates the potential for methylene blue genotoxicity in two mammalian test systems. STUDY DESIGN AND METHODS: Different concentrations of methylene blue were prepared in plasma (heat-treated at 56 degrees C for 1 hour to reduce cytotoxicity) and used, without illumination, in an in vitro mouse lymphoma cell assay designed to detect forward mutations in the gene encoding thymidine kinase. The assay was performed in the presence or absence of rat liver S9 microsomal fraction. Similarly prepared samples of methylene blue in heat-treated plasma were used in an in vivo mouse micronucleus assay. Each system included a negative vehicle control (heat-treated plasma without methylene blue) and a positive control consisting of a known genotoxic agent. RESULTS: Intravenous administration to mice of 62 mg per kg of methylene blue did not increase the frequency of micronuclei in polychromatic red cells harvested from bone marrow. However, methylene blue concentrations of 10 micrograms per mL (with S9 activation) and 30 micrograms per mL (without S9 activation) significantly increased the thymidine kinase mutation frequency of mouse lymphoma cells to approximately 110 × 10(- 6), from a spontaneous frequency of 28 × 10(-6). CONCLUSION: Methylene blue is mutagenic in cultured mammalian cells. In contrast, results from the mouse micronucleus assay suggest that the genotoxicity is not expressed in vivo. Considerably more investigation will be required to assess the genotoxic potential of intravenously administered methylene blue used in virus-inactivation procedures, because of the likelihood of the formation of methylene blue photoproducts or the impact of metabolic conversion of methylene blue to leukomethylene blue in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号