首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   547篇
  免费   41篇
  国内免费   6篇
儿科学   11篇
妇产科学   7篇
基础医学   45篇
口腔科学   15篇
临床医学   98篇
内科学   225篇
皮肤病学   11篇
神经病学   6篇
特种医学   27篇
外科学   25篇
综合类   35篇
预防医学   17篇
眼科学   20篇
药学   43篇
肿瘤学   9篇
  2021年   7篇
  2020年   3篇
  2018年   6篇
  2017年   5篇
  2016年   9篇
  2015年   10篇
  2014年   23篇
  2013年   16篇
  2012年   17篇
  2011年   20篇
  2010年   29篇
  2009年   20篇
  2008年   15篇
  2007年   29篇
  2006年   22篇
  2005年   13篇
  2004年   22篇
  2003年   12篇
  2002年   22篇
  2001年   10篇
  2000年   14篇
  1999年   21篇
  1998年   20篇
  1997年   13篇
  1996年   16篇
  1995年   10篇
  1994年   10篇
  1993年   3篇
  1992年   4篇
  1991年   5篇
  1990年   9篇
  1989年   13篇
  1988年   9篇
  1987年   11篇
  1986年   12篇
  1985年   17篇
  1984年   8篇
  1983年   6篇
  1982年   6篇
  1981年   9篇
  1980年   9篇
  1979年   5篇
  1978年   6篇
  1977年   3篇
  1976年   9篇
  1975年   4篇
  1973年   3篇
  1971年   6篇
  1970年   4篇
  1968年   3篇
排序方式: 共有594条查询结果,搜索用时 15 毫秒
41.
Summary. Background: Fibrinogen contains an alternatively spliced γ‐chain (γ′), which mainly exists as a heterodimer with the common γA‐chain (γA/γ′). Fibrinogen γ′ has been reported to inhibit thrombin and modulate fibrin structure, but the underlying mechanisms are unknown. Objective: We aimed to investigate the molecular mechanism underpinning the influence of γ′ on fibrin polymerization, structure and viscoelasticity. Methods: γA/γA and γA/γ′ fibrinogens were separated using anion exchange chromatography. Cross‐linking was controlled with purified FXIIIa and a synthetic inhibitor. Fibrin polymerization was analyzed by turbidity and gel‐point time was measured using a coagulometer. We used atomic force microscopy (AFM) to image protofibril formation while final clot structure was assessed by confocal and scanning electron microscopy. Clot viscoelasticity was measured using a magnetic microrheometer. Results: γA/γ′ fibrin formed shorter oligomers by AFM than γA/γA, which in addition gelled earlier. γA/γ′ clots displayed a non‐homogenous arrangement of thin fibers compared with the uniform arrangements of thick fibers for γA/γA clots. These differences in clot structure were not due to thrombin inhibition as demonstrated in clots made with reptilase. Non‐cross‐linked γA/γA fibrin was approximately 2.7 × stiffer than γA/γ′. Cross‐linking by FXIIIa increased the stiffness of both fibrin variants; however, the difference in stiffness increased to approximately 4.6 × (γA/γA vs. γA/γ′). Conclusions: Fibrinogen γ′ is associated with the formation of mechanically weaker, non‐uniform clots composed of thin fibers. This is caused by direct disruption of protofibril formation by γ′.  相似文献   
42.
43.
BACKGROUND: A wide variety of pathological conditions have been shown to result in cardiac remodelling and myocardial dysfunction. However, the mechanisms of transition from adaptive to maladaptive alterations, as well as those for changes in cardiac performance leading to heart failure, are poorly understood. OBSERVATIONS: Extensive studies have revealed a broad spectrum of progressive changes in subcellular structures and function, as well as in signal transduction and metabolism in the heart, among different cardiovascular disorders. The present review is focused on identifying the alterations in molecular and biochemical structure of myofibrils (myofibrillar remodelling) in hypertrophied and failing myocardium in different types of heart diseases. Numerous changes at the level of gene expression for both contractile and regulatory proteins have already been reported in failing hearts and heart diseases; these changes are potential precursors for heart failure such as cardiac hypertrophy and cardiomyopathies. Myofibrillar remodelling, as a consequence of proteolysis, oxidation, and phosphorylation of some functional groups in both contractile and regulatory proteins in hearts failing due to different etiologies, has also been described. CONCLUSIONS: Although myofibrillar remodelling appears to be associated with cardiac dysfunction, alterations in both contractile and regulatory proteins are dependent on the type and stage of heart disease.  相似文献   
44.
BACKGROUND: Although oxygen free radicals have been shown to induce myocardial cell damage and cardiac dysfunction, the exact mechanism by which these radicals affect the heart function is not clear. Since the occurrence of intracellular Ca(2+) overload is critical in the genesis of cellular damage and cardiac dysfunction, and since the sarcolemmal Na(+)-Ca(2+) exchange is intimately involved in Ca(2+) movements in myocardium, this study was undertaken to examine the effects of oxygen free radicals on the relationship between changes in cardiac contractile force development and sarcolemmal Na(+)-Ca(2+) exchange activity. METHODS AND RESULTS: Isolated rat hearts were perfused with a medium containing xanthine plus xanthine oxidase for different times, and changes in contractile force as well as sarcolemmal Na(+)-(2+) exchange activity were monitored. Perfusion of the heart with xanthine plus xanthine oxidase resulted in a transient increase followed by a marked decrease in contractile activity; the resting tension was markedly increased. The xanthine plus xanthine oxidase-induced depression in developed tension, rate of contraction, and rate of relaxation, except the transient increase in contractile activity, was prevented by the addition of catalase, but not by superoxide dismutase, in the perfusion medium. A time-dependent depression in sarcolemmal Na(+)-Ca(2+) was also evident upon perfusing the heart with xanthine plus xanthine oxidase. This depression in Na(+)-dependent Ca(2+) uptake was associated with a decrease in the maximal velocity of reaction without any changes in the affinity of Na(+)-Ca(2+) exchanger for Ca(2+). The presence of catalase, unlike superoxide dismutase, prevented the decrease in sarcolemmal Na(+)-Ca(2+) exchange activity in hearts perfused with xanthine plus xanthine oxidase. CONCLUSIONS: The results support the view that a depression in the sarcolemmal Na(+)-Ca(2+) exchange activity may contribute to the occurrence of intracellular Ca(2+) overload and subsequent decrease in contractile activity. Furthermore, these actions of xanthine plus xanthine oxidase in the whole heart appear to be a consequence of H(2)O(2) production rather than the generation of superoxide radicals.  相似文献   
45.
A case of fourteen year old healthy girl with complaint of a discharging sinus on the lower right side of face is reported. All teeth were vital and there was no evidence of periodontitis. There was no history of extraction of a tooth. Total leucocyte count, differential leucocyte count, fasting blood sugar, chest x-ray and routine urine examination were within normal limits. Actinomycosis and scrofuloderma which simulate such a condition were ruled out by culture study. The intraoral periapical x-ray of mandibular molar showed questionable periapical changes at the time of presentation. But definite osteolysis was observed in the repeat radiograph after three months. It was decided to extract the second molar and curette the sinus tract. The extraction proved to be difficult. On examination of the extracted tooth, it was found that the mandibular second molar and second premolar were fused together. The radiograph of the tooth taken after extraction showed confluence of the premolar pulp with the periodontal membrane. On follow up, the lesion was found to heal satisfactorily.  相似文献   
46.
Status of myocardial antioxidants in ischemia-reperfusion injury   总被引:50,自引:0,他引:50  
BACKGROUND: Myocardial ischemia-reperfusion represents a clinically relevant problem associated with thrombolysis, angioplasty and coronary bypass surgery. Injury of myocardium due to ischemia-reperfusion includes cardiac contractile dysfunction, arrhythmias as well as irreversible myocyte damage. These changes are considered to be the consequence of imbalance between the formation of oxidants and the availability of endogenous antioxidants in the heart. OBSERVATIONS: An increase in the formation of reactive oxygen species during ischemia-reperfusion and the adverse effects of oxyradicals on myocardium have now been well established by both direct and indirect measurements. Although several experimental studies as well as clinical trials have demonstrated the cardioprotective effects of antioxidants, some studies have failed to substantiate the results. Nonetheless, it is becoming evident that some of the endogenous antioxidants such as glutathione peroxidase, superoxide dismutase, and catalase act as a primary defense mechanism whereas the others including vitamin E may play a secondary role for attenuating the ischemia-reperfusion injury. The importance of various endogenous antioxidants in suppressing oxidative stress is evident from the depression in their activities and the inhibition of cardiac alterations which they produce during ischemia-reperfusion injury. The effects of an antioxidant thiol containing compound, N-acetylcysteine, and ischemic preconditioning were shown to be similar in preventing changes in the ischemic-reperfused hearts. CONCLUSIONS: The available evidence support the role of oxidative stress in ischemia-reperfusion injury and emphasize the importance of antioxidant mechanisms in cardioprotection.  相似文献   
47.
Although Ca(2+)/calmodulin-dependent protein kinase-II (CaMK) is known to phosphorylate different Ca(2+) cycling proteins in the cardiac sarcoplasmic reticulum (SR) and regulate its function, the status of CaMK in heart failure has not been investigated previously. In this study, we examined the hypothesis that changes in the CaMK-mediated phosphorylation of the SR Ca(2+) cycling proteins are associated with heart failure. For this purpose, heart failure in rats was induced by occluding the coronary artery for 8 weeks, and animals with >30% infarct of the left ventricle wall plus septum mass were used. Noninfarcted left ventricle was used for biochemical assessment; sham-operated animals served as control. A significant depression in SR Ca(2+) uptake and release activities was associated with a decrease in SR CaMK phosphorylation of the SR proteins, ryanodine receptor (RyR), Ca(2+) pump ATPase (SR/endoplasmic reticulum Ca(2+) ATPase [SERCA2a]), and phospholamban (PLB) in the failing heart. The SR protein contents for RyR, SERCA2a, and PLB were decreased in the failing hearts. Although the SR Ca(2+)/calmodulin-dependent CaMK activity, CaMK content, and CaMK autophosphorylation were depressed, the SR phosphatase activity was enhanced in the failing heart. On the other hand, the cAMP-dependent protein kinase-mediated phosphorylation of RyR and PLB was not affected in the failing heart. On the basis of these results, we conclude that alterations in SR CaMK-mediated phosphorylation may be partly responsible for impaired SR function in heart failure.  相似文献   
48.
BackgroundThis study examined the sex differences for hemodynamic and echocardiographic changes in hypertrophied and failing hearts induced by arteriovenous (AV) shunt.Methods and ResultsEchocardiographic and hemodynamic alterations were determined in male and female rats at 4 and 16 weeks after AV shunt. Ovariectomized females treated with estrogen for 16 weeks post-AV shunt were also used. Both genders developed cardiac hypertrophy at 4 and 16 weeks post-AV shunt; however, the increase in cardiac muscle mass was greater in females than males at 16 weeks. At 4 weeks post-AV shunt, increases in ventricular dimensions and left ventricular end-diastolic pressure (LVEDP) as well as a decrease in fractional shortening occurred in males only. Unlike the females, the rates of pressure development (+dP/dt) and decay (-dP/dt) were depressed and LVEDP increased in male rats at 16 weeks post-AV shunt. An increase in cardiac output was seen in both genders, but this was more marked in the males at 4 and 16 weeks post-AV shunt. Although mRNA levels for ACE were increased in both male and female rats at 4 and 16 weeks, mRNA levels for angiotensin II type 1 receptor were increased in males at 16 weeks only. Furthermore, increases in plasma catecholamines were elevated in males but were decreased or unchanged in females at 16 weeks of AV shunt. LV internal diameters as well as depressed fractional shortening occurred in males whereas increases in posterior wall thickness were seen in the female rats at 16 weeks of AV shunt. Ovariectomy resulted in depressed +dP/dt, -dP/dt, and fractional shortening, whereas a marked increase in cardiac output as well as increased LVEDP and LV internal diameters were observed at 16 weeks post-AV shunt. Although treatment with 17-β estradiol normalized ±dP/dt, LVEDP remained elevated.ConclusionGender differences in cardiac function may be due to differences in the type of cardiac remodeling as a consequence of AV shunt. Furthermore, estrogen appears to play an important role in preventing cardiac dysfunction and adverse ventricular remodeling in female rats.  相似文献   
49.
Introduction and Aims: Elevated plasma free fatty acid (FFA) concentrations play a role in the pathogenesis of type 2 diabetes (2DM). Antilipolytic agents that reduce FFA concentrations may be potentially useful in the treatment of 2DM. Our previous observation that CVT‐3619 lowered plasma FFA and triglyceride concentrations in rats and enhanced insulin sensitivity in rodents with dietary‐induced forms of insulin resistance suggested that it might be of use in the treatment of patients with 2DM. The present study was undertaken to compare the antilipolytic effects of CVT‐3619 in normal (Sprague Dawley, SD) and Zucker diabetic fatty (ZDF) rats. Results: ZDF rats had significantly higher fat pad weight, glucose, insulin and FFA concentrations than those of SD rats. EC50 values for forskolin‐stimulated FFA release from isolated adipocytes from SD and ZDF rats were 750 and 53 nM, respectively (p < 0.05). Maximal forskolin stimulation of FFA release was significantly (p < 0.01) less in ZDF rats (133 ± 60 μM) compared with SD rats (332 ± 38 μM). EC50 values for isoproterenol to increase lipolysis in adipocytes from SD and ZDF rats were 2 and 7 nM respectively. Maximal isoproterenol‐stimulated lipolysis was significantly (p < 0.01) lower in adipocytes from ZDF rats (179 ± 23 μM) compared with SD rats (343 ± 27 μM). Insulin inhibited lipolysis in adipocytes from SD rats with an IC50 value of 30 pM, whereas adipocytes from ZDF rats were resistant to the antilipolytic actions of insulin. In contrast, IC50 values for CVT‐3619 to inhibit the release of FFA from SD and ZDF adipocytes were essentially the same (63 and 123 nM respectively). CVT‐3619 inhibited lipolysis more than insulin in both SD (86 vs. 46%, p < 0.001) and ZDF (80 vs. 13%, p < 0.001) adipocytes. In in vivo experiments, CVT‐3619 (5 mg/kg, PO) lowered FFA to a similar extent in both groups. Plasma concentrations of CVT‐3619 were not different in SD and ZDF rats. There was no significant difference in the messenger RNA expression of the A1 receptors relative to β‐actin expression in adipocytes from SD (0.98 ± 0.2) and ZDF rats (0.99 ± 0.3). Conclusion: The antilipolytic effects of CVT‐3619 appear to be independent of insulin resistance and animal model.  相似文献   
50.
To increase transgenic production of granulocyte-macrophage colony- stimulating factor (GM-CSF), we mutated the mRNA's 3'-untranslated region, AUUUA instability elements. Expression vectors containing human or murine GM-CSF cDNAs coding for wild-type (GM-AUUUA) or mutant versions with reiterated AUGUA repeats (GM-AUGUA) were transfected into cells in culture or animals using particle-mediated gene-transfer technology. Normal peripheral blood mononuclear cells accumulated 20- fold greater levels of GM-CSF mRNA and secreted comparably greater amounts of cytokine after transfection with hGM-AUGUA expression vectors versus hGM-AUUUA. hGM-AUGUA mRNA was fivefold more stable (t 1/2 = 95 minutes) than hGM-AUUUA mRNA (t 1/2 = 20 minutes), accounting for elevated steady-state levels. Transfection site extracts and serum samples obtained 24 hours after gene transfer of hGM-AUGUA cDNA into mouse skin contained greater than 32 ng/mL and 650 pg/mL of GM-CSF protein, respectively, compared with 0.33 ng/mL and less than 8 pg/mL for hGM-AUUUA cDNA. GM-CSF produced from mGM-AUGUA cDNA transfected into rat abdominal epidermis induced a profound neutrophil infiltrate. These data suggest a novel strategy for enhanced production of biologically active cytokines by normal cells after in vivo gene transfer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号