首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1155篇
  免费   85篇
  国内免费   8篇
耳鼻咽喉   4篇
儿科学   25篇
妇产科学   5篇
基础医学   228篇
口腔科学   14篇
临床医学   126篇
内科学   203篇
皮肤病学   14篇
神经病学   91篇
特种医学   114篇
外科学   206篇
综合类   7篇
预防医学   52篇
眼科学   6篇
药学   91篇
中国医学   22篇
肿瘤学   40篇
  2023年   5篇
  2022年   9篇
  2021年   23篇
  2020年   16篇
  2019年   24篇
  2018年   33篇
  2017年   16篇
  2016年   18篇
  2015年   30篇
  2014年   41篇
  2013年   58篇
  2012年   102篇
  2011年   90篇
  2010年   57篇
  2009年   56篇
  2008年   90篇
  2007年   87篇
  2006年   87篇
  2005年   89篇
  2004年   69篇
  2003年   56篇
  2002年   50篇
  2001年   15篇
  2000年   14篇
  1999年   13篇
  1998年   18篇
  1997年   11篇
  1996年   12篇
  1995年   6篇
  1994年   7篇
  1993年   5篇
  1992年   6篇
  1991年   6篇
  1990年   1篇
  1989年   5篇
  1988年   1篇
  1986年   3篇
  1985年   4篇
  1983年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1964年   2篇
  1963年   1篇
排序方式: 共有1248条查询结果,搜索用时 15 毫秒
91.
The African trypanosome Trypanosoma brucei, which causes sleeping sickness in humans and Nagana disease in livestock, is spread via blood-sucking Tsetse flies. In the fly's intestine, the trypanosomes survive digestive and trypanocidal environments, proliferate, and translocate into the salivary gland, where they become infectious to the next mammalian host. Here, we show that for successful survival in Tsetse flies, the trypanosomes use trans-sialidase to transfer sialic acids that they cannot synthesize from host's glycoconjugates to the glycosylphosphatidylinositols (GPIs), which are abundantly expressed on their surface. Trypanosomes lacking sialic acids due to a defective generation of GPI-anchored trans-sialidase could not survive in the intestine, but regained the ability to survive when sialylated by means of soluble trans-sialidase. Thus, surface sialic acids appear to protect the parasites from the digestive and trypanocidal environments in the midgut of Tsetse flies.  相似文献   
92.
OBJECTIVE: To compare performance of flow-adapted compensation of endotracheal tube resistance (automatic tube compensation, ATC) between the original ATC system and ATC systems incorporated in commercially available ventilators. DESIGN: Bench study. SETTING: University research laboratory. SUBJECTS: The original ATC system, Dr?ger Evita 2 prototype, Dr?ger Evita 4, Puritan-Bennett 840. INTERVENTIONS: The four ventilators under investigation were alternatively connected via different sized endotracheal tubes and an artificial trachea to an active lung model. Test conditions consisted of two ventilatory modes (ATC vs. continuous positive airway pressure), three different sized endotracheal tubes (inner diameter 7.0, 8.0, and 9.0 mm), two ventilatory rates (15/min and 30/min), and four levels of positive end-expiratory pressure (0, 5, 10, and 15 cm H2O). MEASUREMENTS AND MAIN RESULTS: Performance of tube compensation was assessed by the amount of tube-related (additional) work of breathing (WOBadd), which was calculated on the basis of pressure gradient across the endotracheal tube. Compared with continuous positive airway pressure, ATC reduced inspiratory WOBadd by 58%, 68%, 50%, and 97% when using the Evita 4, the Evita 2 prototype, the Puritan-Bennett 840, and the original ATC system, respectively. Depending on endotracheal tube diameter and ventilatory pattern, inspiratory WOBadd was 0.12-5.2 J/L with the original ATC system, 1.5-28.9 J/L with the Puritan-Bennett 840, 10.4-21.0 J/L with the Evita 2 prototype, and 10.1-36.1 J/L with the Evita 4 (difference between each ventilator at identical test situations, p <.025). Expiratory WOBadd was reduced by 5%, 26%, 1%, and 70% with the Evita 4, the Evita 2 prototype, the Puritan-Bennett 840, and the original ATC system, respectively. The expiratory WOBadd caused by an endotracheal tube of 7.0 mm inner diameter was 5.5-42.2 J/L at a low ventilatory rate and 19.6-82.3 J/L at a high ventilatory rate. It was lowest with the original ATC system and highest with the Evita 4 ventilator (p <.025). CONCLUSIONS: Flow-adapted tube compensation by the original ATC system significantly reduced tube-related inspiratory and expiratory work of breathing. The commercially available ATC modes investigated here may be adequate for inspiratory but probably not for expiratory tube compensation.  相似文献   
93.
94.
95.
Aalberse RC  Crameri R 《Allergy》2011,66(10):1261-1274
Here, we discuss various questions related to IgE epitopes: What are the technical possibilities and pitfalls, what is currently known, how can we put this information into hypothetical frameworks and the unavoidable question: how useful is this information for patient care or allergenicity prediction? We discuss the information obtained by (i) 3D structures of allergen-antibody complexes; (ii) analysis of allergen analogues; (iii) mimics without obvious structural similarity; (iv) mAbs competing with IgE; (v) repertoire analysis of cloned IgEs, and other developments. Based on limited data, four suggestions are presented in the literature: (i) IgE might be more cross-reactive than IgG; (ii) IgE might be more often directed to immunologically 'uninviting' surfaces; (iii) IgE epitopes may tend to cluster and (iv) IgE paratopes might have a higher intrinsic flexibility. While these are not proven facts, they still can generate hypotheses for future research. The hypothesis is put forward that the IgE repertoire of switched B-cells is less influenced by positive selection, because positive selection might not be able to rescue IgE-switched B cells. While this might be of interest for the discussion about mechanisms leading to allergen-sensitization, we need to be modest in answering the 'clinical relevance' question. Current evidence indicates the IgE-epitope repertoire is too big to make specific IgE epitopes a realistic target for diagnosis, treatment or allergenicity prediction. In-depth analysis of a few selected IgE epitope-peptides or mimitopes derived from allergen-sequences and from random peptide libraries, respectively, might well prove rewarding in relation to diagnosis and prognosis of allergy, particularly food allergy.  相似文献   
96.
97.
Advancing our understanding of mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections could lead to effective and targeted therapies. Subsets of immune and inflammatory cells interact via ILs and IFNs; reciprocal regulation and counter balance among T(h) and regulatory T cells, as well as subsets of B cells, offer opportunities for immune interventions. Here, we review current knowledge about ILs 1 to 37 and IFN-γ. Our understanding of the effects of ILs has greatly increased since the discoveries of monocyte IL (called IL-1) and lymphocyte IL (called IL-2); more than 40 cytokines are now designated as ILs. Studies of transgenic or knockout mice with altered expression of these cytokines or their receptors and analyses of mutations and polymorphisms in human genes that encode these products have provided important information about IL and IFN functions. We discuss their signaling pathways, cellular sources, targets, roles in immune regulation and cellular networks, roles in allergy and asthma, and roles in defense against infections.  相似文献   
98.
Critical interactions between genetic and environmental factors -- among which stress is one of the most potent non-genomic factors -- are involved in the development of mood disorders. Intensive work during the past decade has led to the proposal of the network hypothesis of depression [Castren E: Nat Rev Neurosci 2005;6:241-246]. In contrast to the earlier chemical hypothesis of depression that emphasized neurochemical imbalance as the cause of depression, the network hypothesis proposes that problems in information processing within relevant neural networks might underlie mood disorders. Clinical and preclinical evidence supporting this hypothesis are mainly based on observations from depressed patients and animal stress models indicating atrophy (with basic research pointing at structural remodeling and decreased neurogenesis as underlying mechanisms) and malfunctioning of the hippocampus and prefrontal cortex, as well as the ability of antidepressant treatments to have the opposite effects. A great research effort is devoted to identify the molecular mechanisms that are responsible for the network effects of depression and antidepressant actions, with a great deal of evidence pointing at a key role of neurotrophins (notably the brain-derived neurotrophic factor) and other growth factors. In this review, we present evidence that implicates alterations in the levels of the neural cell adhesion molecules of the immunoglobulin superfamily, NCAM and L1, among the mechanisms contributing to stress-related mood disorders and, potentially, in antidepressant action.  相似文献   
99.
100.
Lymphatic vessels in the diaphragm are essential for draining peritoneal fluid, but little is known about their pathological changes during inflammation. Here we characterized diaphragmatic lymphatic vessels in a peritonitis model generated by daily i.p. administration of lipopolysaccharide (LPS) in mice. Intraperitoneal LPS increased lymphatic density, branching, sprouts, connections, and network formation in the diaphragm in time- and dose-dependent manners. These changes were reversible on discontinuation of LPS administration. The LPS-induced lymphatic density and remodeling occur mainly through proliferation of lymphatic endothelial cells. CD11b+ macrophages were massively accumulated and closely associated with the lymphatic vessels changed by i.p. LPS. Both RT-PCR assays and experiments with vascular endothelial growth factor-C/D blockade and macrophage-depletion indicated that the CD11b+ macrophage-derived lymphangiogenic factors vascular endothelial growth factor-C/D could be major mediators of LPS-induced lymphangiogenesis and lymphatic remodeling through paracrine activity. Functional assays with India ink and fluorescein isothiocyanate-microspheres indicated that impaired peritoneal fluid drainage in diaphragm of LPS-induced peritonitis mice was due to inflammatory fibrosis and massive attachment of CD11b+ macrophages on the peritoneal side of the diaphragmatic lymphatic vessels. These findings reveal that CD11b+ macrophages play an important role in i.p. LPS-induced aberrant lymphangiogenesis and lymphatic dysfunction in the diaphragm.The peritoneum provides the lining of the peritoneal cavity and is the most extensive serous membrane in the body.1 The peritoneal membrane is formed by a single layer of mesothelial cells. Beneath the mesothelial cells, there is a very thin and discontinuous layer of connective tissue and a layer of fenestrated lymphatic vessels.2 These three layers not only function as an absorptive surface for peritoneal fluid but also remove pathogens and prevent cells from leaking through damage in the gastrointestinal tract or ascending through the female genital tract.3,4 The peritoneum also plays crucial roles in the local defensive response against bacterial invasion with appropriate activation of resident immune cells and the recruitment of circulating immune cells.5,6Lymphatic vessels have distinctive morphologies and functions in different tissues and organs.7,8 Lymphatic vessels play an essential role in the maintenance of tissue fluid homeostasis through regulated uptake of protein-rich interstitial fluid into draining lymphatic vessels and transport of the drained lymphatic fluid into the blood vasculature via collecting lymphatic vessels.9 In addition, lymphatic vessels have roles in lipid absorption, antigen presentation, tumor metastasis, and wound healing.10,11,12,13,14,15,16 Lymphatic vessels beneath the peritoneum, particularly lymphatic vessels on the peritoneal side of the muscular region of diaphragm, provide the central route for draining peritoneal fluid.2,17,18Lymphatic vessels on the peritoneal side of the diaphragm are largely attenuated but well designed for fluid absorption with extremely flattened and broad lumina (also called lacunae), which are connected with openings between mesothelial cells covering the peritoneal surface.2,19 In comparison, lymphatic vessels on the pleural side of diaphragm are tubular, like other lymphatic vessels.20,21 There are seven to nine parallel lymphatic strips on each hemisphere (sterno-costal muscular region) of the peritoneal side of diaphragm, and these lymphatic vessels are directly connected to the tubular lymphatic vessels on the pleural side by transmural lymphatic branches.20,21,22 Therefore, the peritoneal fluid absorbed by lymphatic lacunae is directly transported into the lymphatic vessels on the pleural side. In contrast, there are few lymphatic vessels in the central tendon region of the diaphragm. However, little is known about relationship between the structural and functional changes of diaphragmatic lymphatic vessels and peritoneal illnesses.Our understanding of the molecular and cellular regulation of new lymphatic vessel formation, “lymphangiogenesis,” has greatly advanced in recent years.10 Among lymphangiogenic growth factors, the roles of vascular endothelial growth factor (VEGF)-C and VEGF-D (VEGF-C/D) and their lymphatic vessel-specific receptor VEGF receptor-3 (VEGFR-3) are specific and essential in lymphangiogenesis.10 In addition, VEGF-A and its receptors play additional roles in lymphangiogenesis in certain pathological conditions.10,11 Moreover, proinflammatory cytokine-induced activation of macrophages is closely involved in pathological lymphangiogenesis in tracheal mucosa and cornea by reciprocal interactions with the VEGF-C/D-VEGFR-3 system.12,13,14,15 However, the relationship between proinflammatory cytokine-induced activation of macrophages and pathological changes of diaphragmatic lymphatic vessels during peritonitis is unknown.In this study, we investigated how acute inflammatory peritonitis affects the diaphragmatic lymphatic vessels structurally and functionally and what roles are played by activated macrophages in this situation. To generate a peritonitis model, we administered lipopolysaccharide (LPS; endotoxin) directly into the peritoneal cavity of mouse. LPS is a well-known cell wall component of most Gram-negative bacteria and acts as a potent initiator of inflammation.23,24 Interestingly, mice with LPS-induced peritonitis displayed aberrant lymphangiogenesis, lymphatic remodeling, and lymphatic dysfunction in the diaphragm. We have defined the underlying mechanisms and the responsible molecules by using specific blocking agents to reveal the roles of critical effector cells and molecules. Our results show that CD11b+ macrophages have an important role in LPS-induced aberrant lymphangiogenesis and lymphatic dysfunction in the diaphragm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号