首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   29篇
  国内免费   51篇
耳鼻咽喉   2篇
儿科学   14篇
基础医学   31篇
口腔科学   8篇
临床医学   59篇
内科学   46篇
皮肤病学   11篇
神经病学   75篇
特种医学   22篇
外科学   23篇
综合类   9篇
预防医学   13篇
眼科学   14篇
药学   51篇
中国医学   1篇
肿瘤学   11篇
  2023年   1篇
  2022年   3篇
  2021年   10篇
  2020年   5篇
  2019年   6篇
  2018年   8篇
  2017年   7篇
  2016年   9篇
  2015年   13篇
  2014年   13篇
  2013年   14篇
  2012年   17篇
  2011年   12篇
  2010年   18篇
  2009年   17篇
  2008年   14篇
  2007年   42篇
  2006年   12篇
  2005年   10篇
  2004年   9篇
  2003年   4篇
  2002年   8篇
  2001年   14篇
  2000年   10篇
  1999年   12篇
  1998年   11篇
  1997年   13篇
  1996年   16篇
  1995年   5篇
  1994年   5篇
  1993年   11篇
  1992年   4篇
  1991年   8篇
  1990年   6篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有390条查询结果,搜索用时 21 毫秒
381.
Functional neuroimaging studies have implicated the involvement of the amygdala and ventrolateral prefrontal cortex (vlPFC) in the pathophysiology of bipolar disorder. Hyperactivity in the amygdala and hypoactivity in the vlPFC have been reported in manic bipolar patients scanned during the performance of an affective faces task. Whether this pattern of dysfunction persists during euthymia is unclear. Using functional magnetic resonance imaging (fMRI), 24 euthymic bipolar and 26 demographically matched healthy control subjects were scanned while performing an affective task paradigm involving the matching and labeling of emotional facial expressions. Neuroimaging results showed that, while amygdala activation did not differ significantly between groups, euthymic patients showed a significant decrease in activation of the right vlPFC (BA47) compared to healthy controls during emotion labeling. Additionally, significant decreases in activation of the right insula, putamen, thalamus and lingual gyrus were observed in euthymic bipolar relative to healthy control subjects during the emotion labeling condition. These data, taken in context with prior studies of bipolar mania using the same emotion recognition task, could suggest that amygdala dysfunction may be a state-related abnormality in bipolar disorder, whereas vlPFC dysfunction may represent a trait-related abnormality of the illness. Characterizing these patterns of activation is likely to help in understanding the neural changes related to the different mood states in bipolar disorder, as well as changes that represent more sustained abnormalities. Future studies that assess mood-state related changes in brain activation in longitudinal bipolar samples would be of interest.  相似文献   
382.
Selective atrophy of the hippocampus, in particular the left CA1 subregion, is detectable in relapsing-remitting MS (RRMS) and is correlated with verbal memory performance. We used novel high-resolution imaging techniques to assess the role that functional compensation and/or white matter integrity of mesial temporal lobe (MTL) structures may play in mediating verbal memory performance in RRMS. High-resolution cortical unfolding of structural MRI in conjunction with functional magnetic resonance imaging (fMRI) was used to localize MTL activity in 18 early RRMS patients and 16 healthy controls during an unrelated word-pairs memory task. Diffusion tensor imaging (DTI) and Tract-Based Spatial Statistics (TBSS) were used to assess the integrity of the fornix and the parahippocampal white matter (PHWM), the major efferents and afferents of the hippocampus. RRMS patients showed greater activity in hippocampal and extra-hippocampal areas during unrelated word-pair learning and recall. Increased hippocampal activity, particularly in the right anterior hippocampus and left anterior CA1 was associated with higher verbal memory scores. Furthermore, increased fractional anisotropy (FA) in the fornix was correlated with both greater fMRI activity in this region and better memory performance. Altered hippocampal fMRI activity in RRMS patients during verbal learning may result from both structural damage and compensatory mechanisms. Successful functional compensation for hippocampal involvement in RRMS may be limited in part by white matter damage to the fornix, consistent with the critical role of this pathway in the clinical expression of memory impairment in MS.  相似文献   
383.

Background

Hypoxia-inducible factor-1 alpha (HIF-1α) maybe an important regulatory factor for angiogenesis of small cell lung cancer (SCLC). Our study aimed to investigate the effect of HIF-1α on angiogenic potential of SCLC including two points: One is the effect of HIF-1α on the angiogenesis of SCLC in vivo. The other is the regulation of angiogenic genes by HIF-1α in vitro and in vivo.

Methods

In vivo we used an alternative method to study the effect of HIF-1a on angiogenic potential of SCLC by buliding NCI-H446 cell transplantation tumor on the chick embryo chorioallantoic membrane (CAM) surface. In vitro we used microarray to screen out the angiogenic genes regulated by HIF-1a and tested their expression level in CAM transplantation tumor by RT-PCR and Western-blot analysis.

Results

In vivo angiogenic response surrounding the SCLC transplantation tumors in chick embryo chorioallantoic membrane (CAM) was promoted after exogenous HIF-1α transduction (p < 0.05). In vitro the changes of angiogenic genes expression induced by HIF-1α in NCI-H446 cells were analyzed by cDNA microarray experiments. HIF-1α upregulated the expression of angiogenic genes VEGF-A, TNFAIP6, PDGFC, FN1, MMP28, MMP14 to 6.76-, 6.69-, 2.26-, 2.31-, 4.39-, 2.97- fold respectively and glycolytic genes GLUT1, GLUT2 to2.98-, 3.74- fold respectively. In addition, the expression of these angiogenic factors were also upregulated by HIF-1α in the transplantion tumors in CAM as RT-PCR and Western-blot analysis indicated.

Conclusions

These results indicated that HIF-1α may enhance the angiogenic potential of SCLC by regulating some angiogenic genes such as VEGF-A, MMP28 etc. Therefore, HIF-1α may be a potential target for the gene targeted therapy of SCLC.  相似文献   
384.
Townsend JD, Bookheimer SY, Foland‐Ross LC, Moody TD, Eisenberger NI, Fischer JS, Cohen MS, Sugar CA, Altshuler LL. Deficits in inferior frontal cortex activation in euthymic bipolar disorder patients during a response inhibition task.
Bipolar Disord 2012: 14: 442–450. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S. Objectives: The inferior frontal cortical–striatal network plays an integral role in response inhibition in normal populations. While inferior frontal cortex (IFC) impairment has been reported in mania, this study explored whether this dysfunction persists in euthymia. Methods: Functional magnetic resonance imaging (fMRI) activation was evaluated in 32 euthymic patients with bipolar I disorder and 30 healthy subjects while performing the Go/NoGo response inhibition task. Behavioral data were collected to evaluate accuracy and response time. Within‐group and between‐group comparisons of activation were conducted using whole‐brain analyses to probe significant group differences in neural function. Results: Both groups activated bilateral IFC. However, between‐group comparisons showed a significantly reduced activation in this brain region in euthymic patients with bipolar disorder compared to healthy subjects. Other frontal and basal ganglia regions involved in response inhibition were additionally significantly reduced in bipolar disorder patients, in both the medicated and the unmedicated subgroups. No areas of greater activation were observed in bipolar disorder patients versus healthy subjects. Conclusions: Bipolar disorder patients, even during euthymia, have a persistent reduction in activation of brain regions involved in response inhibition, suggesting that reduced activation in the orbitofrontal cortex and striatum is not solely related to the state of mania. These findings may represent underlying trait abnormalities in bipolar disorder.  相似文献   
385.
Autism spectrum disorders (ASD) are characterized by significant social impairments, including deficits in orienting attention following social cues. Behavioral studies investigating social orienting in ASD, however, have yielded mixed results, as the use of naturalistic paradigms typically reveals clear deficits whereas computerized laboratory experiments often report normative behavior. The present study is the first to examine the neural mechanisms underlying social orienting in ASD in order to provide new insight into the social attention impairments that characterize this disorder. Using fMRI, we examined the neural correlates of social orienting in children and adolescents with ASD and in a matched sample of typically developing (TD) controls while they performed a spatial cueing paradigm with social (eye gaze) and nonsocial (arrow) cues. Cues were either directional (indicating left or right) or neutral (indicating no direction), and directional cues were uninformative of the upcoming target location in order to engage automatic processes by minimizing expectations. Behavioral results demonstrated intact orienting effects for social and nonsocial cues, with no differences between groups. The imaging results, however, revealed clear group differences in brain activity. When attention was directed by social cues compared to nonsocial cues, the TD group showed increased activity in frontoparietal attention networks, visual processing regions, and the striatum, whereas the ASD group only showed increased activity in the superior parietal lobule. Significant group × cue type interactions confirmed greater responsivity in task-relevant networks for social cues than nonsocial cues in TD as compared to ASD, despite similar behavioral performance. These results indicate that, in the autistic brain, social cues are not assigned the same privileged status as they are in the typically developing brain. These findings provide the first empirical evidence that the neural circuitry involved in social orienting is disrupted in ASD and highlight that normative behavioral performance in a laboratory setting may reflect compensatory mechanisms rather than intact social attention.  相似文献   
386.
387.
This study evaluated the neural basis of verbal working memory (WM) function in a group of 20 children and adolescents with fetal alcohol spectrum disorders (FASDs) and 20 typically developing comparison participants using functional magnetic resonance imaging (fMRI). Both groups showed prominent activation in the frontal‐parietal‐cerebellar network known to be important for verbal WM. Despite equivalent behavioral performance between groups, alcohol‐exposed individuals showed increased activation relative to typically developing individuals in left dorsal frontal and left inferior parietal cortices, and bilateral posterior temporal regions during verbal WM. These effects remained even when group differences on IQ were statistically controlled. This pattern of increased activation coupled with equivalent behavioral performance between groups suggests that individuals with FASD recruit a more extensive network of brain regions during verbal WM relative to typically developing individuals. These findings may suggest that frontal‐parietal processing during verbal WM is less efficient in alcohol‐exposed individuals. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
388.
Dysfunctions in prefrontal cortical networks are thought to underlie working memory (WM) impairments consistently observed in both subjects with bipolar disorder and schizophrenia. It remains unclear, however, whether patterns of WM‐related hemodynamic responses are similar in bipolar and schizophrenia subjects compared to controls. We used fMRI to investigate differences in blood oxygen level dependent activation during a WM task in 21 patients with euthymic bipolar I, 20 patients with schizophrenia, and 38 healthy controls. Subjects were presented with four stimuli (abstract designs) followed by a fifth stimulus and required to recall whether the last stimulus was among the four presented previously. Task‐related brain activity was compared within and across groups. All groups activated prefrontal cortex (PFC), primary and supplementary motor cortex, and visual cortex during the WM task. There were no significant differences in PFC activation between controls and euthymic bipolar subjects, but controls exhibited significantly increased activation (cluster‐corrected P < 0.05) compared to patients with schizophrenia in prefrontal regions including dorsolateral prefrontal cortex (DLPFC). Although the bipolar group exhibited intermediate percent signal change in a functionally defined DLPFC region of interest with respect to the schizophrenia and control groups, effects remained significant only between patients with schizophrenia and controls. Schizophrenia and bipolar disorder may share some behavioral, diagnostic, and genetic features. Differences in the patterns of WM‐related brain activity across groups, however, suggest some diagnostic specificity. Both patient groups showed some regional task‐related hypoactivation compared to controls across the brain. Within DLPFC specifically, patients with schizophrenia exhibited more severe WM‐related dysfunction than bipolar subjects. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
389.
Few studies have examined the relationship between local anatomic thickness of the cortex and the activation signals arising from it. Using structural and functional MRI, we examined whether a relationship exists between cortical thickness and brain activation. Twenty-eight participants were asked to perform the Go/NoGo response inhibition task known to activate the anterior cingulate and the prefrontal cortex. Structural data of the same regions were simultaneously collected. We hypothesized that cortical thickness in these brain regions would positively correlate with brain activation. Data from the structural MRI were aligned with those of functional MRI activation. There was a positive linear correlation between cortical thickness and activation during response inhibition in the right anterior cingulate cortex (Brodmann's Area 24). No significant thickness-activation correlations were found in the prefrontal cortex. Correlations between cortical thickness and activation may occur only in certain brain regions.  相似文献   
390.
醋柳愈酯的体内代谢及药代动力   总被引:2,自引:0,他引:2  
本文用薄层扫描定量法研究了醋柳愈酯在大鼠体内的代射,并测定代谢物水杨酸(SLA)的血药浓度,所得药一时数据依一定程序进行曲线拟合,计算药代动力学参数。并直接观察在大鼠体内的组织分布和在尿、粪、胆汁中的排泄。以肌肉、肺最高,脾、血浆次之,肾、睾丸、心、肝、脑、脂肪均有分布。小部分SLA径肾排泄,粪及胆汁排出量极低。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号