首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   19篇
  国内免费   2篇
儿科学   10篇
妇产科学   1篇
基础医学   37篇
口腔科学   11篇
临床医学   36篇
内科学   58篇
皮肤病学   9篇
神经病学   14篇
特种医学   20篇
外科学   13篇
综合类   11篇
预防医学   13篇
眼科学   8篇
药学   6篇
中国医学   1篇
肿瘤学   7篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2018年   3篇
  2017年   3篇
  2016年   7篇
  2015年   5篇
  2014年   9篇
  2013年   14篇
  2012年   4篇
  2011年   9篇
  2010年   7篇
  2009年   10篇
  2008年   10篇
  2007年   11篇
  2006年   10篇
  2005年   12篇
  2004年   14篇
  2003年   10篇
  2002年   4篇
  2001年   10篇
  2000年   6篇
  1999年   3篇
  1998年   11篇
  1997年   10篇
  1996年   12篇
  1995年   6篇
  1994年   6篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1964年   1篇
  1954年   1篇
排序方式: 共有255条查询结果,搜索用时 12 毫秒
41.
ObjectiveTo investigate disparities in full immunization coverage across and within 86 low- and middle-income countries.MethodsIn May 2015, using data from the most recent Demographic and Health Surveys and Multiple Indicator Cluster Surveys, we investigated inequalities in full immunization coverage – i.e. one dose of bacille Calmette-Guérin vaccine, one dose of measles vaccine, three doses of vaccine against diphtheria, pertussis and tetanus and three doses of polio vaccine – in 86 low- or middle-income countries. We then investigated temporal trends in the level and inequality of such coverage in eight of the countries.FindingsIn each of the World Health Organization’s regions, it appeared that about 56–69% of eligible children in the low- and middle-income countries had received full immunization. However, within each region, the mean recorded level of such coverage varied greatly. In the African Region, for example, it varied from 11.4% in Chad to 90.3% in Rwanda. We detected pro-rich inequality in such coverage in 45 of the 83 countries for which the relevant data were available and pro-urban inequality in 35 of the 86 study countries. Among the countries in which we investigated coverage trends, Madagascar and Mozambique appeared to have made the greatest progress in improving levels of full immunization coverage over the last two decades, particularly among the poorest quintiles of their populations.ConclusionMost low- and middle-income countries are affected by pro-rich and pro-urban inequalities in full immunization coverage that are not apparent when only national mean values of such coverage are reported.  相似文献   
42.
AUTOSOMAL RECESSIVE INHERITANCE OF HYPOHIDROTIC ECTODERMAL DYSPLASIA   总被引:1,自引:0,他引:1  
Letters to the Editor are welcomed for publication (subject to editing). Letters must be signed by all autliors, typewritten double spaced, and must not exceed two pages of text including references. Two copies of all letters should be submitted. Letters should not duplicate material submitted or published in other journals. Prepublication proofs will not be provided.  相似文献   
43.
44.
The sphingosine 1-phosphate receptor 1 (S1P1) promotes lymphocyte egress from lymphoid organs. Previous work showed that agonist-induced internalization of this G protein–coupled receptor correlates with inhibition of lymphocyte egress and results in lymphopenia. However, it is unclear if S1P1 internalization is necessary for this effect. We characterize a knockin mouse (S1p1rS5A/S5A) in which the C-terminal serine-rich S1P1 motif, which is important for S1P1 internalization but dispensable for S1P1 signaling, is mutated. T cells expressing the mutant S1P1 showed delayed S1P1 internalization and defective desensitization after agonist stimulation. Mutant mice exhibited significantly delayed lymphopenia after S1P1 agonist administration or disruption of the vascular S1P gradient. Adoptive transfer experiments demonstrated that mutant S1P1 expression in lymphocytes, rather than endothelial cells, facilitated this delay in lymphopenia. Thus, cell-surface residency of S1P1 on T cells is a primary determinant of lymphocyte egress kinetics in vivo.Sphingosine 1-phosphate (S1P), a multifunctional lipid mediator that signals via five G protein–coupled receptors (GPCRs), regulates vascular maturation, permeability, and angiogenesis (Hla, 2004; Cyster, 2005). Recently, interest in the roles of S1P and its receptors in the immune system has been prompted in part by the identification of the immunomodulator FTY720 (Brinkmann et al., 2002; Mandala et al., 2002; Chiba, 2005), which upon phosphorylation by Sphk2 to FTY720-P (Sanchez et al., 2003; Zemann et al., 2006) acts as a strong agonist for four out of five S1P receptors (Brinkmann et al., 2004). FTY720 induces profound lymphopenia by inhibiting the egress of lymphocytes from the thymus, peripheral lymph nodes, and Peyer’s patches (Chiba, 2005). Indeed, it is now appreciated that S1P signaling modulates the trafficking of not only naive and central memory T cells, but also B cells, dendritic cells, NK cells, osteoclasts, and hematopoietic progenitor cells (Allende and Proia, 2002; Kabashima et al., 2006; Massberg et al., 2007; Schwab and Cyster, 2007; Walzer et al., 2007; Ledgerwood et al., 2008; Rivera et al., 2008; Sebzda et al., 2008; Ishii et al., 2009). These studies suggest that S1P regulates hematopoietic and immune cell trafficking under homeostatic and disease conditions; however, it is unclear precisely how S1P receptor signaling modulates cellular responses to egress cues.The mechanism of how S1P regulates T cell trafficking has been intensively investigated; T cell–specific deletion of S1p1r or hematopoietic reconstitution using S1p1r−/− fetal liver cells resulted in profound lymphopenia, suggesting that the T cell–intrinsic S1P receptor 1 (S1P1) is essential for their egress from the thymus and secondary lymph nodes (Allende et al., 2004; Matloubian et al., 2004). This observation, coupled with the finding that FTY720-P induces the loss of cell-surface S1P1 from lymphocytes in an irreversible manner (Gräler and Goetzl, 2004; Matloubian et al., 2004), suggests that functional antagonism of S1P1 in the lymphocyte compartment is essential for the inhibition of T cell egress.However, other studies have led to the proposal of an alternative mechanism by which S1P1 regulates lymphocyte egress. Immunofluorescence microscopy demonstrated high expression levels of S1P1 in endothelial cells, whereas staining of lymphocytes was weaker (Singer et al., 2005; Sinha et al., 2009). Moreover, administration of SEW2971, a selective S1P1 agonist, does not induce irreversible receptor loss from the cell surface but causes significant lymphopenia in vivo (Jo et al., 2005). Two-photon microscopy of explanted lymph nodes containing labeled lymphocytes suggested that S1P1 agonists may modulate barrier function and closure of vascular portals in the medulla, through which T cells egress into efferent lymphatics (Wei et al., 2005). Thus, this alternative proposal favors endothelial cells as the primary target cell type for S1P1 agonists to inhibit lymphocyte egress (Rosen et al., 2008).Close interactions between immune and vascular cells may underlie the ability of S1P1 to promote lymphocyte egress. In lymph node cortical sinuses, egress of T and B cells required S1P1-dependent transendothelial traverse (Grigorova et al., 2009; Sinha et al., 2009). Indeed, competing chemotactic signaling between the egress-promoting S1P–S1P1 system and the retention-promoting CXCL21–CCR7 chemokine receptor system of T cells appears to determine the rate and extent of their egress from secondary lymphoid organs (Pham et al., 2008). Whether S1P1 signaling in lymphocytes, endothelial compartments, or both is important in the process of egress is not known.S1P1 is a type I GPCR that is rapidly phosphorylated upon agonist stimulation. Although several protein kinases are involved in the phosphorylation of S1P1 (Lee et al., 2001), phosphorylation at the C-terminal domain is particularly relevant to receptor desensitization and internalization (Hla, 2001). Because FTY720-P is degraded less efficiently than S1P by S1P lyase and S1P phosphatases (Bandhuvula et al., 2005; Mechtcheriakova et al., 2007; Yamanaka et al., 2008), its ligation likely induces sustained receptor activation kinetics. Presumably, this underlies the FTY720-P–induced irreversible internalization and proteosomal degradation of S1P1 and resultant lymphopenia (Oo et al., 2007). The GRK-2 enzyme is capable of phosphorylating the serine-rich motif in the C-terminal tail of S1P1 (Watterson et al., 2002), and we recently demonstrated that mutation of the five serines in the C terminus of S1P1 to nonphosphorylatable alanines inhibited S1P- and FTY720-P–induced receptor internalization in transfected HEK293 cells (Oo et al., 2007). Although previous studies of GPCR signaling and chemotaxis have provided some insights into the role of internalization in these processes, the results appear to be receptor specific. For example, a CXCR4 superagonist induced greater chemotaxis than the native ligand stromal cell–derived factor–1α (SDF-1α) with no perceptible receptor internalization (Sachpatzidis et al., 2003). Conversely, mutations in the C terminus of CXCR2 resulted in defective receptor internalization concomitant with impaired chemotaxis (Sachpatzidis et al., 2003). In the case of S1P1, it is unknown whether internalization is required for lymphocyte egress and recirculation.To address the role of S1P1 internalization in the control of lymphocyte egress during homeostasis and FTY720 treatment, we developed a mouse model in which WT S1P1 is replaced by the internalization-deficient mutant (S5A-S1P1). We show that although T cell trafficking under homeostasis is unaltered, S1p1rS5A/S5A mice display kinetic resistance to lymphopenia induced by the S1P1 modulator (FTY720-P) or disruption of the S1P gradient. Adoptive transfer of S1p1rWT/WT and S1p1rS5A/S5A lymphocytes and S1P1 surface staining of lymph node endothelial cells demonstrate that the T cell S1P1, and not endothelial cell S1P1 expression, regulates the rate of lymphocyte egress in vivo. These data support a T cell–intrinsic model of S1P1 signaling in egress kinetics wherein the internalization of S1P1 is a crucial modulator of the cues for T cell migration.  相似文献   
45.
O'Toole JM  Aubert M  Kotsakis A  Blaho JA 《Virology》2003,305(1):153-167
We previously reported that at least eight HSV-1 and five HSV-2 proteins were tyrosine phosphorylated in infected human and mouse cells and the first phosphotyrosine-modified gene product identified was the ICP22 regulatory protein (Blaho, J. A., Zong, C. S., and Mortimer, K. A., 1997, J. Virol. 71, 9828-9832). All electrophoretic forms of ICP22 are tyrosine phosphorylated with the exception of the fastest migrating (unmodified) isoform. We now report the following. (i) ICP22 that reacted with a specific anti-phosphotyrosine antibody contained a significant amount of phosphotyrosine based on phospho-amino acid analysis. These results validate the discovery of ICP22 tyrosine phosphorylation. (ii) Wild-type ICP22 extracted from infected HEp-2 cells migrated as at least seven isoforms, termed ICP22a-g, in denaturing gels. (iii) The primary structure of ICP22 possesses a sequence that is homologous to protein tyrosine kinase recognition sites. A virus, termed RF141, was generated in which ICP22 tyrosine(193) in the kinase target site was mutated to an alanine. (iv) Biochemical analyses of infected HEp-2 and primary HFF cells indicated that the distributions of ICP22 isoforms differed between RF141 and control HSV-1(F). (v) The accumulations of representative viral polypeptides in RF141-infected HEp-2 cells appeared similar to wild-type virus. (vi) RF141 had reduced efficiencies of plating in HFF cells compared to control Vero cells. These differences increased as the multiplicity of infection decreased. Based on these results, we conclude (vii) that ICP22 tyrosine(193) is required for optimal posttranslational modification of the protein in HSV-1 infected human epithelial HEp-2 and primary human fibroblast cells.  相似文献   
46.
47.
48.
49.
Evidence-based medicine is practised widely in some specialties and is now part of many undergraduate and graduate medical curricula. However, the extent to which it is used in clinical paediatric practice is not known and its expansion remains a major challenge. Access to technology which facilitates literature searching, and development of journals addressing specific paediatric problems, will encourage the use of evidence-based medicine by the busy paediatrician. Informed practice of evidence-based medicine will ensure that clinical expertise is complemented by a thorough search, evaluation and judicious application of relevant information from the medical literature.  相似文献   
50.
Nineteen infants who were graduates from special care baby units underwent two overnight tape recordings of oxygen saturation (SaO2) and breathing movements; one during an upper (n = 12) or lower (n = 7) respiratory tract infection and the other when free of infection. Baseline SaO2 was lower during infection (median 99.6 vs 100%, p less than 0.01), with four patients having values (84.3-95.5%) below the normal lower limit for full-term infants (97%). The median number of apnoeic pauses was also lower during respiratory tract infection (4.7 vs 15.7/h, p less than 0.02). The median number of episodic desaturations (SaO2 less than or equal to 80%) did not change significantly (1.3 vs 1.9/h, p greater than 0.05), with the exception of one patient who had extremely increased values during infection for both apnoeic pauses (63/h) and desaturations (112/h). No infant, however, was considered clinically hypoxaemic. Clinically unsuspected hypoxaemia may thus occur during respiratory tract infection in a proportion of infants graduating from special care baby units. Such hypoxaemia may have potentially deleterious effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号