首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2421362篇
  免费   198642篇
  国内免费   4454篇
耳鼻咽喉   34769篇
儿科学   74464篇
妇产科学   64200篇
基础医学   341806篇
口腔科学   68257篇
临床医学   220039篇
内科学   479297篇
皮肤病学   49020篇
神经病学   205883篇
特种医学   96976篇
外国民族医学   886篇
外科学   364166篇
综合类   56487篇
现状与发展   2篇
一般理论   1015篇
预防医学   195047篇
眼科学   56253篇
药学   181116篇
  4篇
中国医学   4460篇
肿瘤学   130311篇
  2018年   25908篇
  2017年   20163篇
  2016年   22075篇
  2015年   24910篇
  2014年   35628篇
  2013年   53525篇
  2012年   72597篇
  2011年   76209篇
  2010年   44591篇
  2009年   42667篇
  2008年   71748篇
  2007年   76075篇
  2006年   76688篇
  2005年   74499篇
  2004年   71626篇
  2003年   69045篇
  2002年   68102篇
  2001年   112664篇
  2000年   116690篇
  1999年   98552篇
  1998年   28152篇
  1997年   25778篇
  1996年   25619篇
  1995年   24775篇
  1994年   23330篇
  1993年   21682篇
  1992年   79475篇
  1991年   76467篇
  1990年   73635篇
  1989年   70912篇
  1988年   65910篇
  1987年   64857篇
  1986年   61385篇
  1985年   58454篇
  1984年   44299篇
  1983年   37720篇
  1982年   22956篇
  1981年   20393篇
  1979年   41323篇
  1978年   29014篇
  1977年   24377篇
  1976年   22856篇
  1975年   23982篇
  1974年   29655篇
  1973年   28058篇
  1972年   26238篇
  1971年   24160篇
  1970年   22760篇
  1969年   21096篇
  1968年   19146篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
During the ongoing public health crisis, many agencies are reporting COVID-19 health outcome information based on the overall population. This practice can lead to misleading results and underestimation of high risk areas. To gain a better understanding of spatial and temporal distribution of COVID-19 deaths; the long term care facility (LTCF) and household population (HP) deaths must be used. This approach allows us to better discern high risk areas and provides policy makers with reliable information for community engagement and mitigation strategies. By focusing on high-risk LTCFs and residential areas, protective measures can be implemented to minimize COVID-19 spread and subsequent mortality.  These areas should be a high priority target when COVID-19 vaccines become available

During the current public health crisis, many agencies and media outlets are reporting COVID-19 health outcome information based on the overall population of Cook County. As we have demonstrated, overall COVID-19 case counts and mortality can be misleading (details in >Story Map 1). Moreover, they offer little guidance for delivering public health interventions to high risk populations, a critical need during this second and potentially more devastating wave of the pandemic. The University of Illinois Chicago School of Public Health’s Public Health Geographic Information System Program (UIC-SPH-PHGIS) and Purdue research team has been examining spatial and temporal patterns of COVID-19 mortality with a focus on the significant loss of life from COVID-19 among Long-Term Care Facility (LTCF) residents in contrast to mortality in the community among residents of private households (non-LTCF; referred to as household population, HP). The goals of the study are:
  • Improve the accuracy of commonly quoted COVID-19 mortality indicators;
  • Gain a better understanding of spatial and temporal distribution of COVID-19 deaths;
  • Examine the role of race, ethnicity, and socioeconomic status in COVID-19 mortality;
  • Identify population and organizational parameters that can inform strategies for public health interventions.
Prioritizing the allocation of resources based on reliable information is a prerequisite of a successful mitigation strategy and immunization plan. Findings from our research have significant practical implications. The state and federal government face a series of policy decisions both due to the recent surge in positive cases and, when the time comes, the need to rationalize distribution of vaccines to high priority groups beyond healthcare workers and nursing home residents in critical areas. The research team seeks to modify prevailing practices in order to derive reliable information that guides policy decisions. At this stage of the study, we identified high-risk LTCFs and residential areas (HP) of Cook County from readily available, real-time mortality data.  相似文献   
72.
73.
74.
BACKGROUND AND PURPOSE:Primary posterior fossa tumors comprise a large group of neoplasias with variable aggressiveness and short and long-term outcomes. This study aimed to validate the clinical usefulness of a radiologic decision flow chart based on previously published neuroradiologic knowledge for the diagnosis of posterior fossa tumors in children.MATERIALS AND METHODS:A retrospective study was conducted (from January 2013 to October 2019) at 2 pediatric referral centers, Children''s Hospital of Philadelphia, United States, and Great Ormond Street Hospital, United Kingdom. Inclusion criteria were younger than 18 years of age and histologically and molecularly confirmed posterior fossa tumors. Subjects with no available preoperative MR imaging and tumors located primarily in the brain stem were excluded. Imaging characteristics of the tumors were evaluated following a predesigned, step-by-step flow chart. Agreement between readers was tested with the Cohen κ, and each diagnosis was analyzed for accuracy.RESULTS:A total of 148 cases were included, with a median age of 3.4 years (interquartile range, 2.1–6.1 years), and a male/female ratio of 1.24. The predesigned flow chart facilitated identification of pilocytic astrocytoma, ependymoma, and medulloblastoma sonic hedgehog tumors with high sensitivity and specificity. On the basis of the results, the flow chart was adjusted so that it would also be able to better discriminate atypical teratoid/rhabdoid tumors and medulloblastoma groups 3 or 4 (sensitivity = 75%–79%; specificity = 92%–99%). Moreover, our adjusted flow chart was useful in ruling out ependymoma, pilocytic astrocytomas, and medulloblastoma sonic hedgehog tumors.CONCLUSIONS:The modified flow chart offers a structured tool to aid in the adjunct diagnosis of pediatric posterior fossa tumors. Our results also establish a useful starting point for prospective clinical studies and for the development of automated algorithms, which may provide precise and adequate diagnostic tools for these tumors in clinical practice.

In the past 10 years, there has been an exponential increase in knowledge of the molecular characteristics of pediatric brain tumors, which was only partially incorporated in the 2016 World Health Organization Classification of Tumors of the Central Nervous System.1 The main update in the 2016 Classification was the introduction of the molecular profile of a tumor as an important factor for predicting different biologic behaviors of entities which, on histology, look very similar or even indistinguishable.2 A typical example is the 4 main groups of medulloblastoma: wingless (WNT), sonic hedgehog (SHH) with or without the p53 mutation, group 3, and group 4. Although they may appear similar on microscopy, these categories have distinct molecular profiles, epidemiology, prognosis, and embryologic origin.3Subsequent to the publication of the 2016 World Health Organization Classification, further studies have identified even more molecular subgroups of medulloblastoma with possible prognostic implications4 and also at least 3 new molecular subgroups of atypical teratoid/rhabdoid tumor (AT/RT)5 and several subgroups of ependymoma.6 MR imaging shows promise as a technique for differentiating histologic tumors and their molecular subgroups. This capability relies on not only various imaging characteristics but also the location and spatial extension of the tumor, evident on MR imaging, which can be traced to the embryologic origin of the neoplastic cells.5,7-10One approach to the challenge of identifying imaging characteristics of different tumors in children is to use artificial intelligence. Yet despite this exciting innovation, correctly identifying the location of the mass and its possible use as an element for differential diagnosis still requires the expertise of an experienced radiologist. Previously, D''Arco et al11 proposed a flow chart (Fig 1) for the differential diagnosis of posterior fossa tumors in children based on epidemiologic, imaging signal, and location characteristics of the neoplasm. The aims of the current study were the following: 1) to validate, in a retrospective, large cohort of posterior fossa tumors from 2 separate pediatric tertiary centers, the diagnostic accuracy of that flow chart, which visually represents the neuroadiologist''s mental process in making a diagnosis of posterior fossa tumors in children, 2) to describe particular types of posterior fossa lesions that are not correctly diagnosed by the initial flow chart, and 3) to provide an improved, clinically accessible flow chart based on the results.Open in a separate windowFIG 1.Predesigned radiologic flow chart created according to the literature before diagnostic accuracy analysis. The asterisk indicates brain stem tumors excluded from the analysis. Double asterisks indicate relative to gray matter. Modified with permission from D''Arco et al.11  相似文献   
75.
BACKGROUND AND PURPOSE:Head motion causes image degradation in brain MR imaging examinations, negatively impacting image quality, especially in pediatric populations. Here, we used a retrospective motion correction technique in children and assessed image quality improvement for 3D MR imaging acquisitions.MATERIALS AND METHODS:We prospectively acquired brain MR imaging at 3T using 3D sequences, T1-weighted MPRAGE, T2-weighted TSE, and FLAIR in 32 unsedated children, including 7 with epilepsy (age range, 2–18 years). We implemented a novel motion correction technique through a modification of k-space data acquisition: Distributed and Incoherent Sample Orders for Reconstruction Deblurring by using Encoding Redundancy (DISORDER). For each participant and technique, we obtained 3 reconstructions as acquired (Aq), after DISORDER motion correction (Di), and Di with additional outlier rejection (DiOut). We analyzed 288 images quantitatively, measuring 2 objective no-reference image quality metrics: gradient entropy (GE) and MPRAGE white matter (WM) homogeneity. As a qualitative metric, we presented blinded and randomized images to 2 expert neuroradiologists who scored them for clinical readability.RESULTS:Both image quality metrics improved after motion correction for all modalities, and improvement correlated with the amount of intrascan motion. Neuroradiologists also considered the motion corrected images as of higher quality (Wilcoxon z = −3.164 for MPRAGE; z = −2.066 for TSE; z = −2.645 for FLAIR; all P < .05).CONCLUSIONS:Retrospective image motion correction with DISORDER increased image quality both from an objective and qualitative perspective. In 75% of sessions, at least 1 sequence was improved by this approach, indicating the benefit of this technique in unsedated children for both clinical and research environments.

Head motion is a common cause of image degradation in brain MR imaging. Motion artifacts negatively impact MR image quality and therefore radiologists’ capacity to read the images, ultimately affecting patient clinical care.1 Motion artifacts are more common in noncompliant patients,2 but even in compliant adults, intrascan movement is reported in at least 10% of cases.3 For children who require high-resolution MR images, obtaining optimal image quality can be challenging, owing to the requirement to stay still over long durations needed for acquisition.4 Sedation can be an option, but it carries higher risks, costs, and preparation and recovery time.5In conditions such as intractable focal epilepsy, identification of an epileptogenic lesion is clinically important to guide surgical treatment. However, these lesions can be visually subtle, particularly in children in whom subtle cortical dysplasias are more common.6 Dedicated epilepsy MR imaging protocols use high-resolution 3D sequences to allow better cortical definition and free reformatting of orientation but involve acquisition times in the order of minutes, so data collection becomes more sensitive to motion.7For children in particular, multiple strategies are available for minimizing motion during MR examinations. Collaboration with play specialists using mock scanners and training or projecting a cartoon are good approaches to reduce anxiety.8,9 These tools are not always available in clinical radiology and, even with these strategies, motion can still be an issue.10 Different scanning approaches to correct for intrascan motion have been proposed. Broadly, prospective methods track head motion in real time and modify the acquisition directions accordingly.11 These approaches are applicable to a wide range of sequences but require optical systems with external tracking markers, sometimes uncomfortable or impractical, and extra setup can ultimately result in longer examinations. Furthermore, these approaches may also not be robust to continuous motion.11-13 Retrospective techniques have also been proposed, in some cases relying on imaging navigators that are not compatible with all standard sequences or contrasts.12Here, we use a more general retrospective motion correction technique: Distributed and Incoherent Sample Orders for Reconstruction Deblurring by using Encoding Redundancy (DISORDER). In this method, k-space samples are reordered to enable retrospective motion correction during image reconstruction.14 Our hypothesis is that DISORDER improves clinical MR imaging quality and readability. To assess its use for clinical sequences, we acquired a dedicated epilepsy MR imaging protocol in 32 children across a wide age range. We used both objective image quality metrics and expert neuroradiologist ratings to evaluate the outcome after motion correction.  相似文献   
76.
77.
78.
AimsOrgan preservation, an important goal in the treatment of head and neck squamous cell carcinoma (HNSCC), may include induction chemotherapy and cisplatin with radiation therapy (CRT). To our knowledge, no reports have directly compared the impact of induction chemotherapy with that of CRT on health-related quality of life (HRQOL).Materials and methodsIn a phase II trial, we assessed the HRQOL of patients treated with induction chemotherapy followed by CRT. Eligible patients had stage III–IV HNSCC. HRQOL questionnaires were administered at baseline, the end of induction (EOI), the end of CRT (EOCRT) and after CRT. Functional Assessment of Cancer Therapy (FACT version 4) assessed HRQOL. We carried out a comparison of changes in HRQOL from baseline to EOI and from EOI to EOCRT. This trial is registered with ClinicalTrials.gov (NCT01566435).ResultsThirty patients were enrolled in the study. Most HRQOL questionnaires were completed (88%). The mean total FACT scores did not differ from baseline to EOI (general: 83.8 versus 79.1, P = 0.08; head and neck: 109.7 versus 105.8, P = 0.33; Total Outcome Index: 69.7 versus 62.3, P = 0.03; respectively, using P ≤ 0.01 to adjust for multiple simultaneous tests of differences). However, total FACT scores significantly worsened from EOI to EOCRT (79.1 versus 62.3, P = 0.01; 105.8 versus 74.2, P < 0.01; 62.3 versus 34.2, P = 0.01; respectively). Within domains, the head and neck cancer subscale score did not differ from baseline to EOI (median 28.5 versus 27.0, P = 0.69), but significantly worsened from EOI to EOCRT (27.0 versus 9.5, P < 0.01). Swallowing, oral pain and voice quality improved from baseline to EOI, but worsened from EOI to EOCRT. Physical and functional scores worsened from baseline to EOI and from EOI to EOCRT. The emotional well-being score improved from baseline to EOI but worsened from EOI to EOCRT.ConclusionsOverall, HRQOL did not significantly change from baseline to EOI but dramatically worsened from EOI to EOCRT.  相似文献   
79.

Purpose

To investigate the preoperative use of combination metformin and statin versus monotherapy on biochemical recurrence (BCR) after radical prostatectomy (RP) in diabetic men.

Patients and Methods

Data of 843 diabetic men who underwent RP were stratified on the basis of preoperative use of no drug or of metformin, statin, or both. Multivariable Cox models were used to test the association between treatment and BCR. In a secondary analysis, models were stratified by race and body mass index (BMI) and further adjusted for glycated hemoglobin (HbA1c).

Results

A total of 259 men (31%) received statin therapy, 94 (11%) metformin, 307 (36%) metformin + statin, and 183 (22%) neither. Five-year BCR-free survival rates were 75% in metformin only versus 75% in metformin + statin versus 60% in statin versus 68% in no drug groups (log-rank, P = .003). On multivariable analysis, preoperative statin use was associated with increased BCR risk versus men receiving neither drug (hazard ratio [HR] = 1.84; 95% confidence interval [CI], 1.28-2.64). Metformin alone (HR 0.88; 95% CI, 0.53-1.47) and metformin + statin (HR 0.88; 95% CI, 0.58-1.33) were unrelated to BCR risks. In secondary analysis, the association between statin use and higher BCR risk was similar regardless of race, but was stronger among men with BMI ≥ 30 kg/m2 (HR 3.12; 95% CI, 1.70-5.72). These results were largely unchanged after adjusting for HbA1c.

Conclusion

Among diabetic men undergoing RP, preoperative statin use was associated with worse BCR risk, especially among men with a high BMI, but these associations may be mitigated by concomitant use of metformin. If validated in future findings, research is needed to understand the basis for these associations.  相似文献   
80.
ABSTRACT

Purpose: To investigate the link between treatment with CTLA-4 and PD-1 checkpoint blockade inhibitors and the development of noninfectious uveitis.

Methods: A survey was distributed to uveitis specialists to identify patients who developed uveitis while receiving either PD-1 inhibitors pembrolizumab and nivolumab; PD-L1 inhibitors atezolizumab, avelumab, and durvalumab; or the CTLA-4 inhibitor ipilimumab.

Results: Fifteen patients from seven institutions were identified. The most common cancer diagnosis (13/15) was malignant melanoma. Fourteen patients had a new uveitis diagnosis following checkpoint blockade administration (six anterior uveitis, six panuveitis, one posterior uveitis, one anterior/intermediate combined); one patient developed optic neuritis. Uveitis was diagnosed within 6 months after drug initiation for 11/12 patients (median 63 days). Corticosteroid treatment was effective for most patients, although two patients had permanent loss of vision.

Conclusions: Patients on checkpoint inhibitor therapy should be educated to seek care if they develop ocular symptoms, and prompt referral to specialists should be incorporated into oncology protocols.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号