首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   2篇
耳鼻咽喉   2篇
基础医学   7篇
临床医学   8篇
内科学   6篇
外科学   1篇
预防医学   1篇
药学   7篇
中国医学   1篇
肿瘤学   33篇
  2022年   1篇
  2021年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   7篇
  2003年   6篇
  2002年   5篇
  2001年   9篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1996年   1篇
  1994年   2篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
31.
Steroid-sensitive gene-1 (SSG1) is a novel gene we cloned, found regulated by 17beta-estradiol in the rat uterus and mammary gland, and over-expressed in 7,12-dimethylbenz(a)anthracene-induced rat mammary tumors. We show here that SSG1 mRNA and protein expression are regulated by androgens in the rat ventral prostate. Increases in SSG1 mRNA levels were detected by Northern blotting after 24 h and reached a 27-fold peak 96 h following castration, relative to SSG1 mRNA expression in sham-operated rats. Dihydrotestosterone or testosterone supplementation of castrated rats prevented this rise in SSG1 mRNA. In contrast with SSG1 mRNA expression, SSG1 protein was decreased 16-fold 2 weeks following castration but was at control levels in the prostates of castrated rats receiving dihydrotestosterone or testosterone. Although SSG1 is regulated by androgens in vivo, treatment of LnCap cells with dihydrotestosterone, cyproterone acetate or flutamide did not result in the regulation of SSG1 protein levels in vitro. Immunofluorescence studies show that SSG1 is mainly expressed in prostatic smooth muscle cells. These results indicate that SSG1 is an androgen-regulated gene that is expressed in the smooth muscle component of the rat ventral prostate in vivo.  相似文献   
32.
33.
Androgens play an important role in prostate gland development and function, and have been implicated in prostate carcinogenesis. We report the regulation of the gap junctional intercellular communication gene connexin 43 (Cx43) by androgens in the prostate gland. In rat ventral prostate tissue, only trace levels of Cx43 mRNA were detected. Castration, however, resulted in a high increase in Cx43 mRNA and protein. Cx32 was unchanged. Castration-induced Cx43 mRNA and protein were abolished by administration of dihydrotestosterone (DHT). Following castration, prostate weights were approximately 16% of sham-treated controls. However, DHT replacement resulted in prostate weights which were not different from sham-treated controls. Under similar castration conditions, Cx43 induction coincided with pronounced apoptosis in the prostate gland cells, and DHT prevented the induction of apoptosis. Given the physiological role of gap junctions and androgens in the regulation of prostate tissue homeostasis, our observations are relevant to the understanding of androgen-dependent prostate carcinogenesis.  相似文献   
34.
The molecular switches by which malignant cancer cells evolve from a confined to an invasive state are poorly understood, but seem to involve a progressive activation of a signaling network shared by several growth factor receptors and non-receptor molecules. Abnormal expression of ErbB tyrosine kinase receptors, commonly seen in cancer, is an early event in the invasive process, which makes these receptors exciting targets for drug discovery. The past few years have been full of promise for ErbB targeting in the context of receptor overexpression, but also fraught with disappointment as clinical efficacy has often been hampered by potential problems such as the heterogeneity of receptor expression within the same tumor, and the extensive cooperative signaling among ErbB and non-ErbB receptors. Cooperative signaling is a common characteristic of invasive cancer cells, and is believed to dictate the genetic program that controls invasion switches. Molecular studies on the combinatorial signaling involved in tumor invasion are becoming a fertile area for target discovery in cancer. This review discusses how cooperative signaling between ErbB and non-ErbB receptors regulates tumor invasion and hence provides multiple opportunities for drug discovery, and how current therapies and investigational drugs could pave the way to even more potent alternative combinatorial therapeutic approaches for invasive cancers.  相似文献   
35.
36.
We have previously reported the synthesis of SMA41, a unimolecular combination of an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) of the quinazoline class and a DNA-damaging monomethyltriazene termed "combimolecule". Hydrolysis of 1-[4-(m-tolylamino)-6-quinazolinyl]-3-methyltriazene (SMA41) gives rise to an intact TKI [6-amino-4-(3-methylanilino)quinazoline; SMA52] capable of inhibiting epidermal growth factor (EGF)-induced EGFR autophosphorylation and a DNA-targeting methyldiazonium species. Herein, we showed that SMA41 blocked EGF-induced EGFR autophosphorylation by an irreversible mechanism, suggesting that it may covalently damage the receptor in these cells. More importantly, this was associated with significant inhibition of mitogen-activated protein kinase activation in A431 cells. In cells treated with [14C]SMA41, radio-high-performance liquid chromatography detection of both N7- and O6-methylguanine revealed an almost complete repair of the O6-methylguanine lesions and a greater tolerance of the N7-methylguanine adducts 24 h post-treatment. In contrast to temozolomide (a cyclic triazene used in the clinic) and the reversible inhibitor SMA52, SMA41 induced significant cell cycle arrest in S, G2, and M phases 24 h after a 2-h drug exposure. Furthermore, in vivo studies demonstrated that SMA41 was well tolerated. At 200 mg/kg, it showed approximately 2-fold greater antiproliferative activity than SMA52 in A431 cells implanted in immunocompromised SCID mice. These results suggest that the binary targeting properties of SMA41 are associated with a binary cascade of events in the cells that seem to culminate into significant growth inhibition in vitro and in vivo.  相似文献   
37.
38.
Bisperoxovanadium (bpV) compounds are irreversible protein tyrosine phosphatase (PTP) inhibitors with a spectrum of activity distinct from that of vanadium salts. We studied the efficacy of a panel of bpVs as antineoplastic agents in vitro and in vivo with a view to investigating phosphatases as potential antineoplastic targets. The Cdc25A dual-specificity phosphatase is an oncoprotein required for progression through G(1)-S. It cooperates with oncogenic Ras to transform cells and is overexpressed in several cancers. Cdc25A is therefore an attractive candidate phosphatase target for the antineoplastic activity of bpV compounds. Cytotoxicity was examined in 28 cancer cell lines and in vivo efficacy was examined in a DA3 murine mammary carcinoma model. In vitro phosphatase assays were used to directly measure phosphatase inhibition, comparing Cdc25A to hVH2/DSP4, leukocyte antigen related/receptor type PTPF catalytic domain (LAR), Yersinia pestis phosphatase (YOPH), and T-cell PTPase/non-receptor type PTP2 (TCPTP). CDK2 activity and Rb phosphorylation were examined by immunocomplex kinase assays and Western blot. Cdc25A is at least 20-fold more sensitive to bpV inhibition than hVH2/DSP4, and 3- to 10- fold more sensitive than TCPTP and LAR. bpV inhibition of Cdc25A in cells leads to CDK2 inactivation and hypophosphorylation Rb, resulting in G1-S arrest and induction of p53-independent apoptosis. The most cytotoxic analogue, bpV[4,7-dimethyl-1,10-phenanthroline-bisperoxo-oxo-vanadium (Me2Phen)], shows submicromolar IC50s against a panel of cell lines and inhibited tumor growth by 80% in mice. These results demonstrate that bpVs may have significant antineoplastic activity. In addition, they are in vitro and in vivo inhibitors of phosphatases including Cdc25A, suggesting that phosphatases may be appropriate targets for novel antineoplastic agents and that further development of these agents, targeting them to specific phosphatases such as CDC25A, may lead to novel agents with enhanced antineoplastic activity.  相似文献   
39.
Molecular classification of breast cancer (BC) identified diverse subgroups that encompass distinct biological behavior and clinical implications, in particular in relation to prognosis, spread, and incidence of recurrence. Basal-like breast cancers (BLBC) compose up to 15% of BC and are characterized by lack of estrogen receptor (ER), progesterone receptor (PR), and HER-2 amplification with expression of basal cytokeratins 5/6, 14, 17, epidermal growth factor receptor (EGFR), and/or c-KIT. There is an overlap in definition between triple-negative BC and BLBC due to the triple-negative profile of BLBC. Also, most BRCA1-associated BCs are BLBC, triple negative, and express basal cytokeratins (5/6, 14, 17) and EGFR. There is a link between sporadic BLBC (occurring in women without germline BRCA1 mutations) with dysfunction of the BRCA1 pathway. Despite the molecular and clinical similarities, these subtypes respond differently to neoadjuvant therapy. BLBCs are associated with an aggressive phenotype, high histological grade, poor clinical behavior, and high rates of recurrences and/or metastasis. Their molecular features render these tumors especially refractory to anti-hormonal-based therapies and the overall prognosis of this subset remains poor. In this article, the molecular profile, genomic, and epigenetic characteristics as well as BRCA1 pathway dysfunction, clinicopathological behavior, and therapeutic options in BLBC are presented, with emphasis on the discordant findings in current literature.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号