首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3396篇
  免费   175篇
  国内免费   18篇
耳鼻咽喉   45篇
儿科学   120篇
妇产科学   101篇
基础医学   270篇
口腔科学   46篇
临床医学   334篇
内科学   895篇
皮肤病学   35篇
神经病学   344篇
特种医学   108篇
外科学   593篇
综合类   83篇
一般理论   1篇
预防医学   141篇
眼科学   92篇
药学   198篇
中国医学   8篇
肿瘤学   175篇
  2024年   4篇
  2023年   20篇
  2022年   59篇
  2021年   116篇
  2020年   79篇
  2019年   114篇
  2018年   134篇
  2017年   87篇
  2016年   98篇
  2015年   116篇
  2014年   161篇
  2013年   190篇
  2012年   274篇
  2011年   300篇
  2010年   148篇
  2009年   149篇
  2008年   228篇
  2007年   239篇
  2006年   201篇
  2005年   225篇
  2004年   177篇
  2003年   179篇
  2002年   140篇
  2001年   18篇
  2000年   14篇
  1999年   17篇
  1998年   17篇
  1997年   10篇
  1996年   5篇
  1995年   7篇
  1994年   6篇
  1993年   6篇
  1992年   7篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1975年   1篇
  1973年   1篇
  1972年   4篇
  1971年   1篇
  1970年   1篇
  1965年   1篇
排序方式: 共有3589条查询结果,搜索用时 15 毫秒
51.
52.
Recessive nebulin (NEB) mutations are a common cause of nemaline myopathy (NM), typically characterized by generalized weakness of early-onset and nemaline rods on muscle biopsy. Exceptional adult cases with additional cores and an isolated distal weakness have been reported. The large NEB gene with 183 exons has been an obstacle for the genetic work-up. Here we report a childhood-onset case with distal weakness and a core-rod myopathy, associated with recessive NEB mutations identified by next generation sequencing (NGS). This 6-year-old boy presented with a history of gross-motor difficulties following a normal early development. He had distal leg weakness with bilateral foot drop, as well as axial muscle weakness, scoliosis and spinal rigidity; additionally he required nocturnal respiratory support. Muscle magnetic resonance (MR) imaging showed distal involvement in the medial and anterior compartment of the lower leg. A muscle biopsy featured both rods and cores. Initial targeted testing identified a heterozygous Nebulin exon 55 deletion. Further analysis using NGS revealed a frameshifting 4 bp duplication, c.24372_24375dup (P.Val8126fs), on the opposite allele. This case illustrates that NEB mutations can cause childhood onset distal NM, with additional cores on muscle biopsy and proves the diagnostic utility of NGS for myopathies, particularly when large genes are implicated.  相似文献   
53.
Tandem configuration-containing perovskite and silicon solar cells are promising candidates for realizing a high power conversion efficiency of 30% at reasonable costs. Silicon solar cells with planar front surfaces used in tandem devices cause high optical losses, which significantly affects their efficiency. Moreover, some studies have explored the fabrication of perovskites on textured silicon cells. However, due to improper texturing, light trapping is not ideal in these devices, which reduces the efficiency. In this work, we optimized the pyramid height of textured silicon cells and efficiently characterized them to achieve enhanced light trapping. Two different kinds of perovskites, namely, Cs0.17FA0.6Pb(Br0.17I0.7)3 and Cs0.25FA0.6Pb(Br0.20I0.7)3 with wide bandgaps were conformally deposited on textured silicon cells, and the performance of these flat and fully textured tandem devices was numerically analyzed. The thickness of each layer in the tandem cell was optimized in a way to ensure a perfect current match between the top perovskite and bottom silicon subcells. The results indicated that the textured tandem configuration enhances light absorption over a broad spectral range due to the optimized pyramid height compared to flat surfaces. Eventually, the photovoltaic parameters of the proposed tandem cell were compared with the already existing structures, and our design supports large values of open circuit voltage (Voc) = 1.78 V, short circuit current density (Jsc) = 20.09 mA cm−2, fill factor (FF) = 79.01%, and efficiency (η) = 28.20% compared to other kinds of tandem solar cells.

Tandem configuration-containing perovskite and silicon solar cells are promising candidates for realizing a high power conversion efficiency of 30% at reasonable costs.  相似文献   
54.
In this work, we have studied the role varying nitrogen plasma compositions play in the low-temperature plasma-assisted growth of indium nitride (InN) thin films. Films were deposited on Si (100) substrates using a plasma-enhanced atomic layer deposition (PE-ALD) reactor featuring a capacitively-coupled hollow-cathode plasma source. Trimethylindium (TMI) and variants of nitrogen plasma (N2-only, Ar/N2, and Ar/N2/H2) were used as the metal precursor and nitrogen co-reactant, respectively. In situ ellipsometry was employed to observe individual ligand exchange and plasma-assisted ligand removal events in real-time during the growth process. Only the samples grown under hydrogen-free nitrogen plasmas (Ar/N2 or N2-only) resulted in nearly stoichiometric single-phase crystalline hexagonal InN (h-InN) films at substrate temperatures higher than 200 °C under 100 W rf-plasma power. Varying the plasma gas composition by adding H2 led to rather drastic microstructural changes resulting in a cubic phase oxide (c-In2O3) film. Combining the in situ measured growth evolution with ex situ materials characterization, we propose a simplified model describing the possible surface reactions/groups during a unit PE-ALD cycle, which depicts the highly efficient oxygen incorporation in the presence of hydrogen radicals. Further structural, chemical, and optical characterization have been carried out on the optimal InN films grown with Ar/N2 plasma to extract film properties. Samples grown at lower substrate temperature (160 °C) and reduced/elevated rf-plasma power levels (50/150 W) displayed similar amorphous character, which is attributed to either insufficient surface energy or plasma-induced crystal damage. InN samples grown at 240 °C under 100 W rf-plasma showed clear polycrystalline h-InN layers with ∼20 nm average-sized single crystal domains exhibiting hexagonal symmetry.

Hollow-cathode plasma-generated hydrogen radicals induce crystal phase transformation from h-InN to c-In2O3 during plasma-enhanced atomic layer deposition using trimethyl-indium and Ar/N2 plasma.  相似文献   
55.
Monitoring antimalarial drugs is necessary for clinical assays, human health, and routine quality control practices in pharmaceutical industries. Herein, we present the development of sensor coatings based on molecularly imprinted polymers (MIPs) combined with quartz crystal microbalance (QCM) for sensitive and selective gravimetric detection of an antimalarial drug: artemether. The MIP coatings are synthesized by using artemether as the template in a poly(methacrylic acid-co-ethylene glycol dimethacrylate) matrix. Artemether-MIP and the non-imprinted polymer (NIP) control or reference layers are deposited on 10 MHz dual-electrode QCM by spin coating (187 ± 9 nm layer thickness after optimization). The coatings are characterized by FTIR spectroscopy and atomic force microscopy that reveal marked differences among the MIP and NIP. The MIP-QCM sensor exhibits high sensitivity (0.51 Hz ppm−1) with sub-10 ppm detection and quantification limits. The MIP-QCM sensor also exhibits a 6-fold higher sensitivity compared to the NIP-QCM, and a dynamic working range of 30–100 ppm. The response time of MIP-QCM devices for a single cycle of analyte adsorption, signal saturation, and MIP regeneration is less than 2.5 min. The sensor also demonstrates selectivity factors of artemether-MIP of 2.2 and 4.1 compared to artemisinin and lumefantrine, respectively. Reversibility tests reveal less than 5% variation in sensor responses over three cycles of measurements at each tested concentration. The MIP-QCM showed lower detection limits than conventional HPLC-UV, and faster response time compared to HPLC-UV and liquid chromatography-mass spectrometry (LC-MS).

Chemical structures of the antimalarial drugs: artemisinin, artemether (a methyl ether derivative of artemisinin), and lumefantrine.  相似文献   
56.
The outbreak of novel coronavirus, SARS-CoV-2, has infected more than 36 million people and caused approximately 1 million deaths around the globe as of 9 October 2020. The escalating outspread of the virus and rapid rise in the number of cases require the instantaneous development of effectual drugs and vaccines. Presently, there are no approved drugs or vaccine available to treat the infection. In such scenario, one of the propitious therapeutic approaches against viral infection is to explore enzyme inhibitors amidst natural compounds, utilizing computational approaches aiming to get products with negligible side effects. In the present study, the inhibitory prospects of ilimaquinone (marine sponge metabolite) were assessed in comparison with hydroxychloroquine, azithromycin, favipiravir, ivermectin and remdesivir at the active binding pockets of nine different vital SARS-CoV-2 target proteins (spike receptor binding domain, RNA-dependent RNA polymerase, Nsp10, Nsp13, Nsp14, Nsp15, Nsp16, main protease, and papain-like-protease), employing an in silico molecular interaction based approach. In addition, molecular dynamics (MD) simulations of the SARS-CoV-2 papain-like protease (PLpro)–ilimaquinone complex were also carried out to calculate various structural parameters including root mean square fluctuation (RMSF), root mean square deviation (RMSD), radius of gyration (Rg) and hydrogen bond interactions. PLpro is a promising drug target, due to its imperative role in viral replication and additional function of stripping ubiquitin and interferon-stimulated gene 15 (ISG15) from host-cell proteins. In light of the possible inhibition of all vital SARS-CoV-2 target proteins, our study has emphasized the importance to study in depth ilimaquinone actions in vivo.

Inhibitory potential of ilimaquinone (marine sponge metabolite) against nine essential SARS-CoV-2 target proteins, employing a molecular interaction and dynamics simulation approach.  相似文献   
57.
Three drugs namely caffeine, paracetamol, and aceclofenac are commonly used for treating various acute and chronic pain related ailments. These 3 drugs have varied solubility profiles, and formulating them into a single tablet did not have the desired dissolution profile for drug absorption. The objective of the present research was to tailor the drug release profile by altering drug solubility. This was achieved by loading the drug into nanosponges. Here, three-dimensional colloidal nanosponges were prepared using β-cyclodextrin with dimethyl carbonate as a cross-linker using the hot-melt compression method. The prepared nanosponges were characterized by FTIR, 1H NMR spectroscopy, DSC, XRPD studies and SEM. The FTIR and DSC results obtained indicated polymer-drug compatibility. The 1H NMR spectroscopy results obtained indicated the drug entrapment within nanosponges with the formation of the inclusion complex. XRPD studies showed that the loaded drug had changed crystalline properties altering drug solubility. SEM photographs revealed the porous and spongy texture on the surface of the nanosponge. Box–Behnken experimental design was adopted for the optimization of nanosponge synthesis. Among the synthesized nanosponges containing paracetamol, aceclofenac and caffeine, batch F3–P31, F3–A31 and F3–C31 were considered optimized. Their particle size was 185, 181 and 199 nm with an entrapment efficiency of 81.53, 84.96, and 89.28% respectively. These optimized nanosponges were directly compressed into tablets and were studied for both pre and post-compression properties including in vitro drug release. The prepared tablet showed desired drug dissolution properties compared to the pure drug. The above outcomes indicated the applicability of nanosponges in modulating the drug release with varied solubility for combination therapy.

Polymeric nanosponges as potential carriers for successful combination therapy of poorly soluble drugs (paracetamol, aceclofenac, caffeine).  相似文献   
58.
BackgroundThe coronavirus diseases of 2019 (COVID-19) pandemic was classified as one of the worst pandemics in the 21st century. Its rapid transmission, unpredicted mortality rate, and the uncertainty surrounding its transmission method have evoked additional fear and anxiety. Nonetheless, to the best of our knowledge, no prior study has explored PTSD prevalence three months after the start of the quarantine procedures in Saudi Arabia nor has examined PTSD prevalence by three different methods.ObjectiveThis observational cross-sectional study aimed to identify the prevalence, severity, and influencing factors of PTSD in different regions of Saudi Arabia three months after the onset of the quarantine procedures related to the COVID-19 pandemic.MethodsThrough the month of June 2020, 1374 people (49.05% men and 50.95% women) completed a 35-item, 10-minute online. The prevalence of PTSD was measured using PCL-S (specific for COVID-19) that assesses the 17 symptoms of PTSD. Resilience was measured using 2-items Arabic version of the Connor-Davidson Resilience Scale 2 (CD-RISC 2).ResultsWe calculated the prevalence by three methods, namely, PTSD cut-off score, criteria, and combined, and the prevalence was 22.63%, 24.8%, and 19.6%, respectively. Female participants showed higher prevalence than male. As well, participants who were either tested positive or suspected of having been infected with COVID-19 showed higher PTSD prevalence. Higher resilience was associated with lower PTSD prevalence.ConclusionsThis was the first study to report PTSD prevalence by three differential methods three months after the onset of the quarantine procedures related to the COVID-19 pandemic in Saudi Arabia. We observed a significant impact of the COVID-19 pandemic in the Saudi population; therefore, great attention should be performed in implementing new procedures that deal with the highlighted risk factors, especially in vulnerable groups, to overcome the psychological impact of the COVID-19 pandemic.  相似文献   
59.
Zika virus (ZIKV) is one of the mosquito borne flavivirus with several outbreaks in past few years in tropical and subtropical regions. The non-structural proteins of flaviviruses are suitable active targets for inhibitory drugs due to their role in pathogenicity. In ZIKV, the non-structural protein 5 (NS5) RNA-Dependent RNA polymerase replicates its genome. Here we have performed virtual screening to identify suitable ligands that can potentially halt the ZIKV NS5 RNA dependent RNA polymerase (RdRp). During this process, we searched and screened a library of ligands against ZIKV NS5 RdRp. The selected ligands with significant binding energy and ligand-receptor interactions were further processed. Among the selected docked conformations, top five was further optimized at atomic level using molecular dynamic simulations followed by binding free energy calculations. The interactions of ligands with the target structure of ZIKV RdRp revealed that they form strong bonds within the active sites of the receptor molecule. The efficacy of these drugs against ZIKV can be further analyzed through in-vitro and in-vivo studies.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号