首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1300篇
  免费   86篇
  国内免费   15篇
耳鼻咽喉   6篇
儿科学   33篇
妇产科学   41篇
基础医学   149篇
口腔科学   22篇
临床医学   161篇
内科学   289篇
皮肤病学   29篇
神经病学   90篇
特种医学   47篇
外科学   104篇
综合类   36篇
一般理论   1篇
预防医学   113篇
眼科学   14篇
药学   139篇
中国医学   15篇
肿瘤学   112篇
  2024年   1篇
  2023年   25篇
  2022年   71篇
  2021年   91篇
  2020年   48篇
  2019年   70篇
  2018年   57篇
  2017年   54篇
  2016年   51篇
  2015年   51篇
  2014年   59篇
  2013年   61篇
  2012年   102篇
  2011年   119篇
  2010年   44篇
  2009年   50篇
  2008年   81篇
  2007年   68篇
  2006年   51篇
  2005年   66篇
  2004年   51篇
  2003年   36篇
  2002年   32篇
  2001年   6篇
  2000年   8篇
  1999年   7篇
  1998年   5篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1979年   1篇
  1973年   1篇
  1972年   1篇
  1949年   1篇
排序方式: 共有1401条查询结果,搜索用时 15 毫秒
41.
The purpose of this study was to investigate the antimicrobial efficacy of six groups of antibiotics and calcium hydroxide against Enterococcus faecalis biofilm in a membrane filter model. Two-day-old E. faecalis (ATCC 29212) biofilm was exposed to ampicillin, co-trimoxazole, erythr omycin, oxytetracycline, vancomycin, vancomycin followed by gentamicin, Ca(OH)(2), and phosphate-buffered saline (control). After 1 h of exposure, the antimicrobial activity was neutralized by washing each disc five times in PBS, and then the colony-forming units of the remaining viable bacteria on each disc were counted. The results revealed that only erythromycin, oxytetracycline and Ca(OH)2 showed 100% biofilm kill. An ANOVA with a Bonferroni post hoc test (P < 0.05) detected significant differences among the test agents, except in the ampicillin group versus the co-trimoxazole group. It is concluded that erythromycin, oxytetracycline and Ca(OH)2 are 100% effective in eliminating E. faecalis biofilm, whereas ampicillin, co-trimoxazole, vancomycin, and vancomycin followed by gentamicin are ineffective.  相似文献   
42.
43.
Objectives: There is growing evidence indicating a connection between vitamin D deficiency and the severity of asthma exacerbations. This study seeks to assess the relationship between vitamin D deficiency and the number and severity of asthma exacerbation in adults. Methods: A retrospective analysis was conducted in 92 patients being treated for asthma at the University of New Mexico Adult Asthma Clinic. Serum 25-hydroxyvitamin D3 levels were analyzed in adults with mild to severe persistent asthma. Using multi-variant modeling, the relationship was examined between serum vitamin D levels and the odds of asthma exacerbations ranging in severity from moderate to severe over the span of five years. Results: This study demonstrates that vitamin D sufficiency was significantly associated with a decreased total number of asthma exacerbations (incidence rate ratio [IRR]: 0.61, 95% confidence interval [CI]: 0.44–0.84, p?=?0.002), decreased total severe asthma exacerbations (IRR: 0.41, 95% CI: 0.24–0.72, p?=?0.002) and decreased emergency room visits (IRR: 0.42, 95% CI: 0.20–0.88, p?=?0.023). Conclusion: Vitamin D deficiency may be linked to the risk of severe asthma exacerbations in adults.  相似文献   
44.
45.
Type IV pili (T4P) are ubiquitous and versatile bacterial cell surface structures involved in adhesion to host cells, biofilm formation, motility, and DNA uptake. In Gram-negative bacteria, T4P pass the outer membrane (OM) through the large, oligomeric, ring-shaped secretin complex. In the β-proteobacterium Neisseria gonorrhoeae, the native PilQ secretin ring embedded in OM sheets is surrounded by an additional peripheral structure, consisting of a peripheral ring and seven extending spikes. To unravel proteins important for formation of this additional structure, we identified proteins that are present with PilQ in the OM. One such protein, which we name T4P secretin-associated protein (TsaP), was identified as a phylogenetically widely conserved component of the secretin complex that co-occurs with genes for T4P in Gram-negative bacteria. TsaP contains an N-terminal carbohydrate-binding lysin motif (LysM) domain and a C-terminal domain of unknown function. In N. gonorrhoeae, lack of TsaP results in the formation of membrane protrusions containing multiple T4P, concomitant with reduced formation of surface-exposed T4P. Lack of TsaP did not affect the oligomeric state of PilQ, but resulted in loss of the peripheral structure around the PilQ secretin. TsaP binds peptidoglycan and associates strongly with the OM in a PilQ-dependent manner. In the δ-proteobacterium Myxococcus xanthus, TsaP is also important for surface assembly of T4P, and it accumulates and localizes in a PilQ-dependent manner to the cell poles. Our results show that TsaP is a novel protein associated with T4P function and suggest that TsaP functions to anchor the secretin complex to the peptidoglycan.Type IV pili systems (T4PSs) are involved in the assembly of long, thin fibers, which are found on the surfaces of many bacteria and archaea (1). Type IV pili (T4P) function in host cell adhesion, twitching motility, virulence, DNA uptake, and biofilm formation and are evolutionary related to type II secretion systems (T2SSs), bacterial transformation systems, and the archaellum (24). T4PSs can be divided into T4aPSs and T4bPSs that are distinguished based on pilin size and assembly systems (5, 6). T4aPSs form the most abundant class, and the T4P formed by these systems can undergo cycles of extension, adhesion, and retraction, which is a feature that distinguishes them from the other bacterial surface structures (7, 8). T4aP retract at rates up to 1 μm/s and can generate forces up to 150 pN (9, 10). Generally, T4bPSs are not associated with retraction. Here, we focus on T4aPSs and refer to these as T4PSs unless specifically indicated. T4PSs have been studied extensively in many bacteria but are especially well characterized in Neisseria and Pseudomonas spp. and in Myxococcus xanthus. Different nomenclature is used for different T4PSs (Table S1). Here, the Neisseria gonorrhoeae nomenclature is used.T4P are composed of major (e.g., PilE) and minor (in N. gonorrhoeae; e.g., PilV, PilX, ComP) pilins that are synthesized as preproteins with a type III signal peptide. After cleavage of the signal peptide by the prepilin peptidase PilD (11, 12), the T4P are assembled by a multiprotein complex (13). In Gram-negative bacteria, the proteins of T4PSs can be divided into three subcomplexes: the inner membrane (IM) motor complex, the alignment complex, and the outer membrane (OM) pore complex (6). The IM motor complex drives both the assembly and the retraction of T4P. Pilin subunits are extruded from the IM by the platform protein PilG (14) and the hexameric ATPase PilF (15). Disassembly of T4P with retraction occurs when PilF is replaced by the hexameric ATPase PilT (7, 16). PilU, a PilT paralog, is involved in retraction to a lesser extent (17). The alignment complex consisting of PilM, PilN, PilO, and PilP is proposed to connect the IM motor complex and the OM pore complex, and it is also thought to be involved in the stability and/or gating of the OM complex (1820). In the OM, PilQ forms a homooligomeric ring that serves as a conduit for T4P (2123).PilQ is a member of the secretin protein family. Proteins belonging to this family are present in many Gram-negative bacteria and are components of T4PSs, T2SSs, type III secretion systems (T3SSs), and extrusion systems of filamentous phages (24). Secretins are multidomain proteins with a signal sequence and a conserved C-terminal OM-spanning domain. Most secretins contain multiple copies of an N-terminal α/β domain (the N domains). PilQ proteins are integral OM proteins and form large gated channels. Oligomeric secretin complexes with different symmetries have been identified. Structural characterization by EM of purified PilQ from Neisseria meningitidis showed a dodecameric structure with a chamber sealed at both ends (25, 26), whereas the T2SS secretins PulD (27) and GspD (28) of the Klebsiella oxytoca pullanase and Vibrio cholerae toxin secretion systems, respectively, showed dodecameric structures with a chamber open at the periplasmic side and closed at the OM side. The structure of the InvG secretin complex of the T3SS of the Salmonella typhimurium needle complex showed 15-fold symmetry and is open at both ends (29), and the phage pIV secretin showed 14-fold symmetry (30). The structure of the C-terminal OM-spanning domain involved in multimer formation is currently not known. Crystal structures of the periplasmic N domains of GspD of the T2SS of enterotoxigenic Escherichia coli (31), of EscC of the T3SS of S. typhimurium (32), and of N. meningitidis PilQ (25) showed that these domains consist of α-helices packed against three-stranded β-sheets. Secretins of T4P systems also contain B domains, which are not present in other secretins and are located N-terminal to the N domains. The structure of the B2 domain of N. meningitidis PilQ consists of several β-strands (25). Remarkably, when the sequence conservation of the B2 domain was mapped to the structure of the B2 domain of N. meningitidis PilQ, a highly conserved patch was identified that was proposed to form the binding site for a currently unidentified T4PS protein (25).Secretins interact with several other proteins. Pilotin proteins are small lipoproteins that interact with the extreme C terminus of secretins and are responsible for OM targeting and oligomerization of secretins (3338). Secretins of T4PSs also interact with the alignment complex. For N. meningitidis, Pseudomonas aeruginosa, and M. xanthus PilQ, a direct interaction was demonstrated between the respective PilPs and the N0 domains of the PilQs (25, 39, 40). Recently, ExeA of the T2SS of Aeromonas hydrophila (41) and FimV of the T4PS of P. aeruginosa (42) were also implicated in secretin assembly. They contain, respectively, PF01471 and LysM peptidoglycan (PG)-binding domains that might attach them to the PG. However, neither of these two proteins is ubiquitously conserved in bacteria assembling T4P.We have previously shown that the PilQ secretin of N. gonorrhoeae embedded in OM sheets is surrounded by a peripheral structure, which is formed by an additional peripheral ring as well as spikes (43). The proteins that make up these structures are not known. Here, we identify a widely conserved protein, which we name T4P secretin-associated protein (TsaP), that is important for the formation of the peripheral structure. Phylogenomic analysis of 450 genomes of Proteobacteria showed that the presence of the tsaP gene is strongly linked to the presence of genes for T4aPSs. We characterize the TsaP protein and demonstrate the importance of TsaP for T4aP assembly in the two phylogenetically widely separated model organisms N. gonorrhoeae and M. xanthus.  相似文献   
46.
In recent years, several genes have been implicated in the variable disease presentation of global developmental delay (GDD) and intellectual disability (ID). The endoplasmic reticulum membrane protein complex (EMC) family is known to be involved in GDD and ID. Homozygous variants of EMC1 are associated with GDD, scoliosis, and cerebellar atrophy, indicating the relevance of this pathway for neurogenetic disorders. EMC10 is a bone marrow-derived angiogenic growth factor that plays an important role in infarct vascularization and promoting tissue repair. However, this gene has not been previously associated with human disease. Herein, we describe a Saudi family with two individuals segregating a recessive neurodevelopmental disorder. Both of the affected individuals showed mild ID, speech delay, and GDD. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify candidate genes. Further, to elucidate the functional effects of the variant, quantitative real-time PCR (RT-qPCR)-based expression analysis was performed. WES revealed a homozygous splice acceptor site variant (c.679-1G>A) in EMC10 (chromosome 19q13.33) that segregated perfectly within the family. RT-qPCR showed a substantial decrease in the relative EMC10 gene expression in the patients, indicating the pathogenicity of the identified variant. For the first time in the literature, the EMC10 gene variant was associated with mild ID, speech delay, and GDD. Thus, this gene plays a key role in developmental milestones, with the potential to cause neurodevelopmental disorders in humans.  相似文献   
47.
48.
49.
BackgroundCeliac disease (CD) and rheumatoid arthritis (RA) are multisystem autoimmune diseases affecting 1% of general populationa. Both diseases share genetic and immunological features.AimIn this retrospective study, we aim to determine the frequency of auto‐antibodies of RA in adult patients with CD.Materials and methodsSeventy seven adult patients with active CD were included in the present study. Ninety healthy blood donors (HBD) served as control group. Anti‐cyclic citrullinated peptides antibodies (CCP‐Ab) and rheumatoid factors (RF; IgA, IgG and IgM) were determined by enzyme linked immunosorbent assay (ELISA) for patients and control group. For statistical analysis, we used Chi‐square or Fisher''s exact test.ResultsOur study included 77 adult patients with active celiac disease (57 female, 20 male). Twenty‐four (31.2%) active celiac patients and 7 (7.8%) blood donors had CCP‐Ab or RF (31.2% vs 7.8%, p < 10–4). Only two patients (2.6%) had both CCP‐Ab and RF. IgA was the predominant isotype of RF in celiac patients (n = 18; 23.4%) while none of healthy blood donors had RF‐IgA (23.4% vs 0.0%, p < 10–4).ConclusionThe current study has shown that CD is associated with a high frequency of RF‐IgA suggesting that celiac patients could be at a higher risk of developing RA.  相似文献   
50.
Mice with experimental nerve damage can display long‑lasting neuropathic pain behavior. We show here that 4 months and later after nerve injury, male but not female mice displayed telomere length (TL) reduction and p53‑mediated cellular senescence in the spinal cord, resulting in maintenance of pain and associated with decreased lifespan. Nerve injury increased the number of p53‑positive spinal cord neurons, astrocytes, and microglia, but only in microglia was the increase male‑specific, matching a robust sex specificity of TL reduction in this cell type, which has been previously implicated in male‑specific pain processing. Pain hypersensitivity was reversed by repeated intrathecal administration of a p53‑specific senolytic peptide, only in male mice and only many months after injury. Analysis of UK Biobank data revealed sex-specific relevance of this pathway in humans, featuring male‑specific genetic association of the human p53 locus (TP53) with chronic pain and a male-specific effect of chronic pain on mortality. Our findings demonstrate the existence of a biological mechanism maintaining pain behavior, at least in males, occurring much later than the time span of virtually all extant preclinical studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号